Mathematics of eye

Łukasz Płociniczak

Intitute of Mathematics and Computer Science
Wroclaw University of Technology
28.10.2013

UWr

What mathematical modeling can do for sight and vision?

What mathematical modeling can do for sight and vision?

- Blinking and tears.
\square Dry eye syndrome (disease of affluence: prolonged reading, driving a car, contact lenses...).
\square Blinking brings a very thin layer of tear film. How to describe it?
\square How to calculate the moment of tear drying (Break-Up-Time, BUT) ?

What mathematical modeling can do for sight and vision?

- Blinking and tears.
\square Dry eye syndrome (disease of affluence: prolonged reading, driving a car, contact lenses...).
\square Blinking brings a very thin layer of tear film. How to describe it?
\square How to calculate the moment of tear drying (Break-Up-Time, BUT) ?
- Flow of aqueous humor in chambers.
\square Aqueous humor - a jelly-like substance flowing in chambers of the eye.
\square It is a source of the intraocular pressure (IOP).
\square Its balanced flow is necessary for proper eye functioning.

What mathematical modeling can do for sight and vision?

- Blinking and tears.
\square Dry eye syndrome (disease of affluence: prolonged reading, driving a car, contact lenses...).
\square Blinking brings a very thin layer of tear film. How to describe it?
\square How to calculate the moment of tear drying (Break-Up-Time, BUT) ?
- Flow of aqueous humor in chambers.
\square Aqueous humor - a jelly-like substance flowing in chambers of the eye.
\square It is a source of the intraocular pressure (IOP).
\square Its balanced flow is necessary for proper eye functioning.
- Tonometry and other ways of measuring IOP.
\square IOP is determined in almost every eye examination.
\square Keeping IOP in proper bounds is very important: too large \rightarrow glaucoma, too small \rightarrow hypotony.
\square Noninvasive means of measuring IOP: maybe from the topography?

What mathematical modeling can do for sight and vision?

- Blinking and tears.
\square Dry eye syndrome (disease of affluence: prolonged reading, driving a car, contact lenses...).
\square Blinking brings a very thin layer of tear film. How to describe it?
\square How to calculate the moment of tear drying (Break-Up-Time, BUT) ?
- Flow of aqueous humor in chambers.
\square Aqueous humor - a jelly-like substance flowing in chambers of the eye.
\square It is a source of the intraocular pressure (IOP).
\square Its balanced flow is necessary for proper eye functioning.
- Tonometry and other ways of measuring IOP.
\square IOP is determined in almost every eye examination.
\square Keeping IOP in proper bounds is very important: too large \rightarrow glaucoma, too small \rightarrow hypotony.
\square Noninvasive means of measuring IOP: maybe from the topography?
- What is the shape of the cornea?

Eye anatomy

Typical sizes:

- eye size 24 mm ,
- corneal diameter 11.5 mm ,
- corneal thickness $0.5-0.7 \mathrm{~mm}$,
- height circa 2 mm .

Five layers of the cornea:

- epithelium,
- Bowman's layer,
- stroma,
- Descement's membrane,
- endothelium.

Eye anatomy

Cornea is very important - it accounts for about $\frac{2}{3}$ eye power!

Tears and their meaning

- They moisten the eye and protect from bacteria.
- Contents: water, salt (NaCl) and enzymes.

- Three layers: lipid $0.1-0.2 \mu \mathrm{~m}$, aqueous

Blinking and the physics

- Blinking brings the tear film over the surface of the cornea.
- Typical time between successive blinks in a healthy patient - about 5-8s (in rabbit's eye - 10min!).
- Problems: too small tear production, too fast evaporation \rightarrow "dry eye".

[^0]
Blinking and the physics

- Blinking brings the tear film over the surface of the cornea.
- Typical time between successive blinks in a healthy patient - about 5-8s (in rabbit's eye - 10 min !).
- Problems: too small tear production, too fast evaporation \rightarrow "dry eye".
- Some of the physical properties.
\square Lipid layer protects from excessive evaporation. Average evaporation rate is $15 \times 10^{-6} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ for normal eyes and $60 \times 10^{-6} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ for dry eyes.
\square This layer also weakens the surface tension: tear-air $-43.3 \mathrm{mN} \mathrm{m}{ }^{-1}$, water-air $-72.3 \mathrm{mN} \mathrm{m}^{\mathbf{- 1}}$.
\square Tear film is slightly shear thinning - viscosity diminishes with the increase of shear stress.
\square In modeling it is usually assumed that tear is a Newtonian fluid and takes into account several factors: surface tension, gradients in lipid layer, evaporation, blinking, heat source and corneal geometry [1]

[^1]
Interlude: thin layer approximation

- So-called "Lubrication Theory": Reynolds problem on bearing oiling.
- It is applied when the geometry of the problem is "long an thin": $\epsilon=$ typical thickness / typical length.

Interlude: thin layer approximation

- So-called "Lubrication Theory": Reynolds problem on bearing oiling.
- It is applied when the geometry of the problem is "long an thin": $\epsilon=$ typical thickness / typical length.
- Example: Plain bearing. The bearing $\left(y=H_{0} h(x / L)\right)$ stays motionless and the surface $y=0$ slides with the speed U.

Interlude: thin layer approximation

- So-called "Lubrication Theory": Reynolds problem on bearing oiling.
- It is applied when the geometry of the problem is "long an thin": $\epsilon=$ typical thickness / typical length.
- Example: Plain bearing. The bearing $\left(y=H_{0} h(x / L)\right)$ stays motionless and the surface $y=0$ slides with the speed U.
- We scale the unknowns:

$$
\epsilon=\frac{H_{0}}{L}, u^{*}=\frac{u}{U}, v^{*}=\frac{v}{\epsilon U}, t^{*}=\frac{t}{L / U}, p^{*}=\frac{p}{\mu U L / H_{0}^{2}}, R e^{\prime}=\epsilon^{2} \frac{U L}{\nu}
$$

x th component of the nondimensional Navier-Stokes equation then becomes (dropping asterisks):

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=\frac{1}{R e^{\prime}}\left(-\frac{\partial p}{\partial x}+\epsilon^{2} \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

Interlude: thin layer approximation

- So-called "Lubrication Theory": Reynolds problem on bearing oiling.
- It is applied when the geometry of the problem is "long an thin": $\epsilon=$ typical thickness / typical length.
- Example: Plain bearing. The bearing $\left(y=H_{0} h(x / L)\right)$ stays motionless and the surface $y=0$ slides with the speed U.
- We scale the unknowns:

$$
\epsilon=\frac{H_{0}}{L}, u^{*}=\frac{u}{U}, v^{*}=\frac{v}{\epsilon U}, t^{*}=\frac{t}{L / U}, p^{*}=\frac{p}{\mu U L / H_{0}^{2}}, R e^{\prime}=\epsilon^{2} \frac{U L}{\nu} .
$$

x th component of the nondimensional Navier-Stokes equation then becomes (dropping asterisks):

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=\frac{1}{R e^{\prime}}\left(-\frac{\partial p}{\partial x}+\epsilon^{2} \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) .
$$

- Using the continuity equation we obtain Reynolds equation:

$$
\frac{d}{d x}\left(h^{3} \frac{\partial p}{\partial x}\right)=6 \frac{\partial h}{\partial x}
$$

Break-up time (BUT)

- It is usually defined as a first moment of dry region to appear just after blinking.
- It is a very important parameter measured by ophthalmologists. Very sensitive to ambient conditions, but usually 20 - 30 s.

Break-up time (BUT)

- It is usually defined as a first moment of dry region to appear just after blinking.
- It is a very important parameter measured by ophthalmologists. Very sensitive to ambient conditions, but usually 20 - 30s.
- Very good estimates were obtained by Braun and Fitt [2] .
- Model: thin-layer theory ($\epsilon=d / I=x$-dimension / y-dimension) for Navier-Stokes + evaporation and gravity.

Break-up time (BUT)

- It is usually defined as a first moment of dry region to appear just after blinking.
- It is a very important parameter measured by ophthalmologists. Very sensitive to ambient conditions, but usually 20 - 30 s.
- Very good estimates were obtained by Braun and Fitt [2] .
- Model: thin-layer theory ($\epsilon=d / I=x$-dimension $/ y$-dimension) for Navier-Stokes + evaporation and gravity.
- Typical scales:

$$
d=10 \mu \mathrm{~m}, I=0.36 \mathrm{~mm}, \epsilon=0.028, G=0.75, U=0.75 \mathrm{mms}^{-1}, \operatorname{Re}=0.2
$$

- Main equation for the tear thickness:

$$
h_{t}+\frac{E}{J_{0}^{-1}+h}+\left[\frac{h^{3}}{12}\left(h_{x x x}+G\right)\right]_{x}=0
$$

where E, J_{0} - constants associated with evaporation and temperature.

[^2]
Break-up time (BUT) c.d.

- Braun and Fitt obtained a numerical solution on a 4000 point-grid. For the BUT they took the time when h became smaller that grid-size.

Flows in eye chambers

- Anterior chamber - a region between iris and the cornea. Posterior chamber region between iris and lens.
- Aqueous humor - a fluid that fills the chambers (about $0.3 \mathrm{~cm}^{3}$). It removes the products of metabolism, nourishes and provides IOP.
- It is transparent and jelly-like. It consists of water and amino acids.
- It is produces by ciliary body, from where it flows through posterior chamber, pupil and is removed in the Schlemm's canal.
- It must be conserved (!) - same amount removed as produced.

- How to describe it mathematically?

Flows in eye chambers cont'd.

- What causes the flow of aqueous humor? [3,4] .
\square Buoyancy is a result of temperature gradient between iris and the anterior chamber.
\square The flow is produced by ciliary body.
\square Influence of buoyancy-gravity in horizontal position (ex. during sleeping).
\square REM phase.

[3] A.D.Fitt, G.Gonzalez, Fluid Mechanics of the Human Eye: Aqueous Humour Flow in the Anterior Chamber 10 $/\left[\begin{array}{l}4 \\ 25\end{array}\right.$

Flows in eye chambers cont'd.

- What causes the flow of aqueous humor? [3,4] .
\square Buoyancy is a result of temperature gradient between iris and the anterior chamber.
\square The flow is produced by ciliary body.
\square Influence of buoyancy-gravity in horizontal position (ex. during sleeping).
\square REM phase.

- The simplest model: Navier-Stokes equations, heat equation + Bussinesq approximation and "lubrication theory".
- It is possible to obtain an exact solution, for example

$$
\psi=-\frac{\left(T_{1}-T_{0}\right) g \alpha z^{2}(z-h)^{2}}{24 \nu h}
$$

[3] A.D.Fitt, G.Gonzalez, Fluid Mechanics of the Human Eye: Aqueous Humour Flow in the Anterior Chamber

Flows in eye chambers cont'd.

- When patient is asleep, the blood flow does not necessarily balance the temperature gradient.
- A very small flow occurs that is a result of gravity and a minute temperature gradient.
- Facodenesis - lens wibrations caused by head movements.
- These vibrations have to have sufficiently small amplitude in order to provide flawless seeing.
- Fitt and Gonzalez assumed a certain periodical "'pumping"' speed of fluid through the pupil.
- The flow is essentially $3 D$.

Flows in eye chambers cont'd. (Schlemm's Canal)

[5] Z.Ismail, A.D.Fitt, Mathematical modelling of flow in Schlemm's Canal and its influence on primary open angle, glaucoma

Flows in eye chambers cont'd. (Schlemm's Canal)

- When the anterior chamber holds too much aqueous humor (ex. when the Schlemm's Canal becomes stucked), the pressure rises.
- POAG (Primary Open Angle Glaucoma) \rightarrow advancing and permanent eye nerve damage \rightarrow blindness.

Flows in eye chambers cont'd. (Schlemm's Canal)

- When the anterior chamber holds too much aqueous humor (ex. when the Schlemm's Canal becomes stucked), the pressure rises.
- POAG (Primary Open Angle Glaucoma) \rightarrow advancing and permanent eye nerve damage \rightarrow blindness.
- In [5] Authors use the Friedenwald's Law (relation between IOP and eye's volume) and thin-layer theory:

$$
(F L) \quad p_{1}=p_{2} \exp \left(K \ln 10\left(V_{1}-V_{2}\right)\right) .
$$

[^3]
Flows in eye chambers cont'd. (Schlemm's Canal)

- When the anterior chamber holds too much aqueous humor (ex. when the Schlemm's Canal becomes stucked), the pressure rises.
- POAG (Primary Open Angle Glaucoma) \rightarrow advancing and permanent eye nerve damage \rightarrow blindness.
- In [5] Authors use the Friedenwald's Law (relation between IOP and eye's volume) and thin-layer theory:

$$
(F L) \quad p_{1}=p_{2} \exp \left(K \ln 10\left(V_{1}-V_{2}\right)\right) .
$$

- They obtained an equation that describes increase of IOP that is caused by Schlemm's Canal occlusion:

$$
\frac{d p}{d t} \approx K p \frac{d V_{i n}}{d t} .
$$

- This occlusion can cause the IOP to become arbitrarily large \rightarrow glaucoma and blindness.

IOP

13 [6] Markiewitz HH, The so-called Imbert-Fick Law

IOP

- It provides a proper eye shape.
- Typical IOP: $10-20 \mathrm{mmHg}$. When $I O P>25 \mathrm{mmHg}$ glaucoma can develop (or worse...). When $I O P<10 \mathrm{mmHg}$ detunning of lens and cornea can occur (or worse...).

[^4]
IOP

- It provides a proper eye shape.
- Typical IOP: $10-20 \mathrm{mmHg}$. When $I O P>25 \mathrm{mmHg}$ glaucoma can develop (or worse...). When $I O P<10 \mathrm{mmHg}$ detunning of lens and cornea can occur (or worse...).
- Measuring the actual value of IOP is crucial (but it is very sensitive on ambient conditions). This is the field of Tonometry.
- There are some measuring techniques:
\square from very invasive (during a surgical operation),
\square through invasive, ex. Goldman's Tonometer,
\square to less invasive, ex. air-puff.

[^5]
IOP

- It provides a proper eye shape.
- Typical IOP: $10-20 \mathrm{mmHg}$. When $I O P>25 \mathrm{mmHg}$ glaucoma can develop (or worse...). When $I O P<10 \mathrm{mmHg}$ detunning of lens and cornea can occur (or worse...).
- Measuring the actual value of IOP is crucial (but it is very sensitive on ambient conditions). This is the field of Tonometry.
- There are some measuring techniques:
\square from very invasive (during a surgical operation),
\square through invasive, ex. Goldman's Tonometer,
\square to less invasive, ex. air-puff.
- Imbert-Fick's "Law" (in reality: Newton's Third Law applied "by force"): IOP = value of force (in grams) needed to flatten a circle with radius of 3.06 mm on the cornea [6].
- Cons: wrong physical basis, not-the-best accuracy especially for high IOP, unpleasant for the patient, ...

IOP

- It provides a proper eye shape.
- Typical IOP: $10-20 \mathrm{mmHg}$. When IOP $>25 \mathrm{mmHg}$ glaucoma can develop (or worse...). When $I O P<10 \mathrm{mmHg}$ detunning of lens and cornea can occur (or worse...).
- Measuring the actual value of IOP is crucial (but it is very sensitive on ambient conditions). This is the field of Tonometry.
- There are some measuring techniques:
\square from very invasive (during a surgical operation),
\square through invasive, ex. Goldman's Tonometer,
\square to less invasive, ex. air-puff.
- Imbert-Fick's "Law" (in reality: Newton's Third Law applied "by force"): IOP = value of force (in grams) needed to flatten a circle with radius of 3.06 mm on the cornea [6].
- Cons: wrong physical basis, not-the-best accuracy especially for high IOP, unpleasant for the patient, ...
- A measurement only on the basis of corneal topography?

What is the shape of the cornea?

Contemporary models of corneal topography:

- The simplest: based on the conical curves - mostly parabolas and ellipses (Helmholtz, 1924) ("statistically" correct).
- Very complicated: based on shell thery and FEM.
- Models based on Zernike Polynomials (1934) - describe aberration. Lately, also Bessel functions are being used [7].
- Real models of eye.

Survey literature

1. Fowler CW, Dave TN., Review of past and present techniques of measuring corneal topography, Ophthalmic Physiol Opt. 14(1) (1994), 49-58,
2. Lindsay R, Smith G, Atchison D., Descriptors of corneal shape, Optom Vis Sci. 75(2) (1998), 156-8.
3. Y. Mejía-Barbosa, D. Malacara-Hernández, A review of methods for measuring corneal topography, Optometry and Vision Science 78 (2001), 240-253,
[^6]
A new model

Main assumptions [8]

- Cornea is a thin membrane (constant surface tension and lack of bending moments).
- Three forces shape the cornea: surface tension, elasticity and a pressure-force.
- In the model we describe the height of the cornea h over some reference plane Ω (here: a circle).

Equation of the corneal topography (in a nondimensional form)

$$
-\nabla^{2} h+a h=\frac{b}{\sqrt{1+\|\nabla h\|^{2}}} \quad \text { on } \Omega, \quad h=0 \text { na } \partial \Omega,
$$

where h-rescaled, $a:=\frac{k R^{2}}{T}$ i $b:=\frac{P R}{T}$ and k-elasticity constant, T-tension, P-intraocular pressure, R-typical size of the cornea.

[^7]A direct problem
How, from the knowledge of a and b, find the shape of the cornea h ?

- We assume an axial symmetry $h=h(r)$ then a and b have to be constant.
- We solve the problem

$$
-\frac{1}{r} \frac{d}{d r}\left(r \frac{d h}{d r}\right)+a h=\frac{b}{\sqrt{1+h^{\prime 2}}}, \quad 0 \leq r \leq 1, h^{\prime}(0)=0, h(1)=0
$$

A direct problem

How, from the knowledge of a and b, find the shape of the cornea h ?

- We assume an axial symmetry $h=h(r)$ then a and b have to be constant.
- We solve the problem

$$
\begin{equation*}
-\frac{1}{r} \frac{d}{d r}\left(r \frac{d h}{d r}\right)+a h=\frac{b}{\sqrt{1+h^{\prime 2}}}, \quad 0 \leq r \leq 1, h^{\prime}(0)=0, h(1)=0 . \tag{1}
\end{equation*}
$$

- For sufficiently small b we have existence, uniqueness, monotonicity and fundamental estimates of (1) by

$$
h_{0}(r):=\frac{b}{a}\left(1-\frac{l_{0}(\sqrt{a} r)}{I_{0}(\sqrt{a})}\right),
$$

where I_{0} is a modified Bessel function of the first kind.

A direct problem

How, from the knowledge of a and b, find the shape of the cornea h ?

- We assume an axial symmetry $h=h(r)$ then a and b have to be constant.
- We solve the problem

$$
\begin{equation*}
-\frac{1}{r} \frac{d}{d r}\left(r \frac{d h}{d r}\right)+a h=\frac{b}{\sqrt{1+h^{\prime 2}}}, \quad 0 \leq r \leq 1, h^{\prime}(0)=0, h(1)=0 . \tag{1}
\end{equation*}
$$

- For sufficiently small b we have existence, uniqueness, monotonicity and fundamental estimates of (1) by

$$
h_{0}(r):=\frac{b}{a}\left(1-\frac{I_{0}(\sqrt{a} r)}{I_{0}(\sqrt{a})}\right),
$$

where I_{0} is a modified Bessel function of the first kind.

- For small values of a the solution (1) is a parabola.

Direct problem cont.

Theorem 1
Let $b \leq \frac{\sqrt{a}}{I_{1}(\sqrt{a})} \frac{\sqrt{2 l_{0}(\sqrt{a})-1}}{I_{0}(\sqrt{a})-1}$. The solution of (1) is a positive, nonincreasing function f for which we have

$$
A h_{1} \leq h \leq h_{0}
$$

where h_{0} is defined by the formula

$$
h_{0}(r):=\frac{b}{a}\left(1-\frac{l_{0}(\sqrt{a} r)}{I_{0}(\sqrt{a})}\right)
$$

and h_{1} is the next approximation in the successive approximation scheme. Moreover,

$$
A=\sqrt{\frac{1+h_{0}^{\prime}(1)^{2}}{1+\left(2-\frac{1}{l_{0}(\sqrt{a})}\right) h_{0}^{\prime}(1)^{2}}}
$$

Inverse problem

How to find a and b when we know h ?

- Problems of this kind are usually ill-posed, that is they do not fulfill one of the following conditions
\square they have a solution,
\square they have an unique solution,
\square small error in the initial data causes small error in the output (stability).

Inverse problem

How to find a and b when we know h ?

- Problems of this kind are usually ill-posed, that is they do not fulfill one of the following conditions
\square they have a solution,
\square they have an unique solution,
\square small error in the initial data causes small error in the output (stability).
- In our case we consider two problems:

1. $a \mathrm{i} b$ are constant and unknown \rightarrow nonlinear problem,
2. a is known and constant but b (not necessarily constant) has to be found \rightarrow linear problem.

Inverse problem

How to find a and b when we know h ?

- Problems of this kind are usually ill-posed, that is they do not fulfill one of the following conditions
\square they have a solution,
\square they have an unique solution,
\square small error in the initial data causes small error in the output (stability).
- In our case we consider two problems:

1. $a \mathrm{i} b$ are constant and unknown \rightarrow nonlinear problem,
2. a is known and constant but b (not necessarily constant) has to be found \rightarrow linear problem.

- Remark: We cannot hope for an unique solution - we look for a solution in the L^{2} norm sense (least-squares).

The nonliear inverse problem (a, b constant and unknown)

In subsequent considerations we will assume that the curvature of the cornea is small. It simplifies the equation

$$
-\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial h}{\partial r}\right)+a h=b, \quad h^{\prime}(0)=1, \quad h(1)=0 .
$$

19 〔20] W.Okrasiński, Ł.Płociniczak, Nonliear Parameter Identification in Corneal Geometry Model

The nonliear inverse problem (a, b constant and unknown)

In subsequent considerations we will assume that the curvature of the cornea is small. It simplifies the equation

$$
-\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial h}{\partial r}\right)+a h=b, \quad h^{\prime}(0)=1, \quad h(1)=0 .
$$

- The nonlinear problem can be solved in a two-step method [10] :

1. First, using the general theory we find

$$
b^{\dagger}=b^{\dagger}(a)=\frac{\langle f(a, \cdot), h\rangle}{\|f(a, \cdot)\|^{2}},
$$

where $f(a, r):=\frac{b}{a}\left(1-\frac{l_{0}(\sqrt{ }) r}{l_{0}(\sqrt{a})}\right)$.

The nonliear inverse problem (a, b constant and

 unknown)In subsequent considerations we will assume that the curvature of the cornea is small. It simplifies the equation

$$
-\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial h}{\partial r}\right)+a h=b, \quad h^{\prime}(0)=1, \quad h(1)=0
$$

- The nonlinear problem can be solved in a two-step method [10] :

1. First, using the general theory we find

$$
b^{\dagger}=b^{\dagger}(a)=\frac{\langle f(a, \cdot), h\rangle}{\|f(a, \cdot)\|^{2}}
$$

where $f(a, r):=\frac{b}{a}\left(1-\frac{l_{0}(\sqrt{a} r)}{l_{0}(\sqrt{a})}\right)$.
2. Then, we solve a nonlinear problem of fining a. We use an iterative method similar to the Newton's tangent scheme (a new proof of convergence)

$$
a_{n+1}=a_{n}+\Delta a_{n}, \quad \Delta a_{n}=\frac{\left\langle h-f\left(a_{n}, \cdot\right), \frac{\partial}{\partial a} b^{\dagger}(a) f(a ; \cdot)\right\rangle}{\left\|\frac{\partial}{\partial a} b^{\dagger}(a) f(a ; \cdot)\right\|^{2}}
$$

19 [20G] W.Okrasiński, Ł.Płociniczak, Nonliear Parameter Identification in Corneal Geometry Model

The linear inverse problem (a constant and known, b unknown)

$$
-\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial h}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} h}{\partial \theta^{2}}+a h=b,\left.\quad h\right|_{\partial \Omega}=0
$$

where $\partial \Omega$ is an unit circle.

The linear inverse problem (a constant and known, b unknown)

$$
-\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial h}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} h}{\partial \theta^{2}}+a h=b,\left.\quad h\right|_{\partial \Omega}=0,
$$

where $\partial \Omega$ is an unit circle.

- We use eigenfunctions [9] $\Phi_{n m}(r, \theta):=\frac{1}{\sqrt{4 \pi}} \frac{I_{n}\left(\mu_{n m} r\right)}{n_{n+1}\left(\mu_{n m}\right)} e^{i n \theta}$, where $\mu_{n m}$ is m-th zero of I_{n} (nth order modified Bessel function of the first kind).

The linear inverse problem (a constant and known, b

 unknown)$$
-\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial h}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} h}{\partial \theta^{2}}+a h=b,\left.\quad h\right|_{\partial \Omega}=0,
$$

where $\partial \Omega$ is an unit circle.

- We use eigenfunctions [9] $\Phi_{n m}(r, \theta):=\frac{1}{\sqrt{4 \pi}} \frac{I_{n}\left(\mu_{n m} r\right)}{I_{n+1}\left(\mu_{n m}\right)} e^{i n \theta}$, where $\mu_{n m}$ is m-th zero of I_{n} (nth order modified Bessel function of the first kind).
- A solution of the inverse problem $b^{\dagger}=\sum_{n, m}\left(a-\mu_{n m}^{2}\right)\left\langle h, \Phi_{n m}\right\rangle \Phi_{n m}$.

The linear inverse problem (a constant and known, b

 unknown)$$
-\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial h}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} h}{\partial \theta^{2}}+a h=b,\left.\quad h\right|_{\partial \Omega}=0,
$$

where $\partial \Omega$ is an unit circle.

- We use eigenfunctions [9] $\Phi_{n m}(r, \theta):=\frac{1}{\sqrt{4 \pi}} \frac{I_{n}\left(\mu_{n m} r\right)}{I_{n+1}\left(\mu_{n m}\right)} e^{i n \theta}$, where $\mu_{n m}$ is m-th zero of I_{n} (nth order modified Bessel function of the first kind).
- A solution of the inverse problem $b^{\dagger}=\sum_{n, m}\left(a-\mu_{n m}^{2}\right)\left\langle h, \Phi_{n m}\right\rangle \Phi_{n m}$.
- Remark: $a-\mu_{n m}^{2} \rightarrow \infty$, which destroys stability: small error in h will cause the series to become divergent.

The linear inverse problem (a constant and known, b

 unknown)$$
-\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial h}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} h}{\partial \theta^{2}}+a h=b,\left.\quad h\right|_{\partial \Omega}=0
$$

where $\partial \Omega$ is an unit circle.

- We use eigenfunctions [9] $\Phi_{n m}(r, \theta):=\frac{1}{\sqrt{4 \pi}} \frac{I_{n}\left(\mu_{n m} r\right)}{I_{n+1}\left(\mu_{n m}\right)} e^{i n \theta}$, where $\mu_{n m}$ is m-th zero of I_{n} (nth order modified Bessel function of the first kind).
- A solution of the inverse problem $b^{\dagger}=\sum_{n, m}\left(a-\mu_{n m}^{2}\right)\left\langle h, \Phi_{n m}\right\rangle \Phi_{n m}$.
- Remark: $a-\mu_{n m}^{2} \rightarrow \infty$, which destroys stability: small error in h will cause the series to become divergent.
- A regularization is neccessary

$$
b_{\alpha, T(N, M)}:=\sum_{\substack{n=-N, m=1}}^{N, M} \frac{\left\langle h, \Phi_{n m}\right\rangle}{\alpha+\frac{1}{a-\mu_{n m}^{2}}} \Phi_{n m}
$$

The linear inverse problem (a constant and known, b unknown) cont'd.

How much $b_{\alpha, T}^{\delta}$ is different from the true value b ? (If $\left\|h^{\delta}-h\right\| \leq \delta$).
Theorem 2
We have

$$
\left\|b_{\alpha, T(N, M)}^{\delta}-b\right\| \leq 2 \sqrt{D \delta}
$$

if only $\alpha=\alpha(\delta), N=N(\delta), M=M(\delta)$ are chosen, as to

$$
\alpha+C(N, M)=\sqrt{\frac{\delta}{D}}
$$

where $\|y\| \leq D$ and $C(N, M):=\inf \left\{\frac{1}{a-\mu_{n m}^{2}}:|n| \leq N, m \leq M\right\}$.

Numerics

Fitting errors, with $a_{0} i$ b_{0} constant.

β, where $b=b_{0}+\beta$.
$22 / 25$

Summary

- Mathematical modeling in problems associated with eye is very desired.
- It is a source of very interesting and nontrivial problems from different fields on mathematics.
- Further progress in medicine will be very dependent on mathematics.
- We obtained a new, easy to apply, model of corneal topography based on physical principles.
- We have presented a new and fast iterative method of determining unknown parameters in the inverse problem.
\square Methods of finding a and b guarantee good model fitting (with small error).
\square Coefficients a and b are associated with measurable parameters of the cornea, and thus can be important in diagnosis and treating eye diseases.
\square The function β contains information about lack of axial symmetry of the cornea.

Bibliography

1. R.J.Braun et al., Thin film dynamics on a prolate spheroid with application to the cornea, J Eng Math (2012) 73:121-138
2. R.J.Braun, A.D.Fitt, Modelling drainage of the precorneal tear film after a blink, Mathematical Medicine and Biology 20 (2003), 1-28
3. A.D.Fitt, G.Gonzalez, Fluid Mechanics of the Human Eye: Aqueous Humour Flow in the Anterior Chamber, Bulletin of Mathematical Biology (2006)
4. C.R.Canning et al., Fluid flow in the anterior chamber of a human eye, IMA Journal of Mathematics Applied in Medicine and Biology 19 (2002), 31-60
5. Z.Ismail, A.D.Fitt, Mathematical modelling of flow in Schlemm's Canal and its influence on primary open angle glaucoma, International Conference on Science and Technology: Applications in Industry and Education (2008)
6. H.H. Markiewitz, The so-called Imbert-Fick Law, AMA Arch.Ophthalmol. 1960; 64: 189/159.
7. J.P. Trevino et al., Zernike vs. Bessel circular functions in visual optics,

24 Ophthalmis and Phusinnocical Ontica 2013

Bibliografia c.d.

8. W.Okrasiński, Ł.Płociniczak, A Nonlinear Mathematical Model of the Corneal Shape, Nonlinear Analysis: Real World Applications 13 (2012) pp. 1498-1505
9. Ł.Płociniczak, W.Okrasiński, Regularization of an III-posed Model in Corneal Topography, Inverse Problems in Science and Engineering 21 (6) (2013), 1090-1097
10. W.Okrasíński, Ł.Płociniczak, Bessel Function Model for Corneal Topography, Applied Mathematics and Computation 223 (2013), 436-443
11. W.Okrasíński, Ł.Płociniczak, Nonliear Parameter Identification in a Corneal Geometry Model, under review

[^0]: 5 / ${ }_{2}^{1}{ }_{2}^{2}$ R.J.Braun et al., Thin film dynamics on a prolate spheroid with application to the cornea

[^1]: $5 /[1]$

[^2]: 7 /[25 R.J.Braun, A.D.Fitt, Modelling drainage of the precorneal tear film after a blink

[^3]: [5] Z.Ismail, A.D.Fitt, Mathematical modelling of flow in Schlemm's Canal and its influence on primary open angle glaucoma

[^4]: 13 [6] Markiewitz HH, The so-called Imbert-Fick Law

[^5]: 13 [6] Markiewitz HH, The so-called Imbert-Fick Law

[^6]: $14{ }^{[7]}{ }_{25}$

[^7]: 15 [81 W. Okrasiński, Ł.Płociniczak, A Nonlinear Mathematical Model of the Corneal shape

