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NUMERICAL METHOD FOR THE TIME-FRACTIONAL POROUS
MEDIUM EQUATION∗

 LUKASZ P LOCINICZAK†

Abstract. This paper deals with a construction and convergence analysis of a numerical scheme
devised for solving the time-fractional porous medium equation with Dirichlet boundary conditions
on the half line. The governing equation exhibits both nonlocal and nonlinear behavior making
the numerical computations challenging. Our strategy is to reduce the problem into a single one-
dimensional Volterra integral equation for the self-similar solution and then to apply a suitable
discretization. The main difficulty arises due to the non-Lipschitzian behavior of the nonlinearity
of the corresponding integral equation. By the analysis of the recurrence relation for the error, we
are able to prove that there exists a family of schemes that is convergent for a large subset of the
parameter space. More specifically, in the very slow regime of the subdiffusion, we require that
the diffusivity parameter has to be sufficiently large to provide the convergence of the method. We
illustrate our results with a concrete example of a method based on the midpoint quadrature.
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1. Introduction. The interest in nonlocal equations and models has flourished
in the last few decades. The investigations has been conducted in a twofold way:
experimental and theoretical. One of the most important real-world realizations of
the nonlocal behavior is the anomalous diffusion [34, 27, 28], which is present in a
multitude of various situations. To mention only a few examples, there is evidence
of anomalous transport in quantum optics [44], physics of plasma [17], movement of
bacteria and amoeba [31], G-protein on cell surface [48], and hydrology [15, 37, 38, 47].
In all of those applications diffusion is reported to be either slower (subdiffuion) or
faster (superdiffusion) than in the classical case.

For the theoretical counterpart of the problem, the adequate model of the anoma-
lous diffusion can be constructed with a use of the fractional derivative or some other
nonlocal operator that takes into account temporal or spatial history of the process
[34]. As mathematical entities these objects attracted a great interest of both pure
and applied mathematicians. The prominent example is the fractional Laplacian,
which is still a subject of vigorous investigations from many viewpoints [30, 11, 51].

The main motivation of our work is the subdiffusive moisture percolation in porous
media such as building materials or minerals (for experimental results, see [14, 20, 29,
43, 54]). It appears that a decently accurate model for this anomalous phenomenon
could be based on the time-fractional nonlinear diffusion equation. The nonlocality
in the temporal operator models the waiting-time property of the medium. This is a
consequence of the complex structure of the medium and, mathematically, is described
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by a nonlocal flux as was shown in [39]. Coupled with an assumption of power-law
behavior of the waiting times produces the fractional derivative as the time-evolution
operator.

In our previous investigations [40, 38, 39] we have considered the following time-
fractional nonlinear diffusion equation (also known as the time-fractional porous
medium equation)

∂αt u = (umux)x , 0 < α < 1, m > 1,(1.1)

where the fractional derivative is of the Riemann–Liouville type

∂αt u(x, t) =
1

Γ(1− α)

∂

∂t

∫ t

0

(t− s)−αu(x, s)ds.(1.2)

The boundary conditions that we impose are the following:

u(x, 0) = 0, u(0, t) = 1, x > 0, t > 0,(1.3)

where the nondimensionalization has been implicitly assumed. The above problem
is a description of an experiment where one measures the material properties of an
essentially one-dimensional half-infinite medium under the water imbibition from the
boundary. Note also that the vanishing initial condition forces the Riemann–Liouville
derivative to be equivalent to the Caputo version, which would be present for nonho-
mogeneous initial data. Some fitting of the above model with experimental data has
been conducted for example in [47, 38]. In the subdiffusive dynamics the obtained
values of the parameters were α ≈ 0.8− 0.9 and m ≈ 7− 8. The literature mentioned
in [47] also suggests that α usually is reasonably close to 1 while m is smaller than 10.

There is a wealth of literature concerning numerical methods for fractional dif-
ferential equations (both ODEs and PDEs)—some surveys can be found in [19, 5].
Concerning the linear fractional diffusion the reader can find relevant methods, for
example, in [49, 32, 52]. The numerical methods for the main operator in the spa-
tial diffusion, namely, the fractional Laplacian, can be found in [24, 13]. As for the
nonlinear version of the anomalous diffusion, an interesting paper recently appeared
in which the authors constructed a multigrid waveform method of fast convergence
[22]. Moreover, a similar equation to ours has been solved in [4] in the context of
the petroleum industry. Some other numerical approaches concern space-fractional
nonlinear diffusion [21, 18], nonlinear source terms [55, 53, 6] and variable order dif-
fusion [35].

Our approach is based on a transformation of the governing PDE to the equivalent
nonlinear Volterra equation (for a recent survey of theory and numerical methods, see
[7]). However, in our case the classical convergence theory cannot be applied since
the nonlinearity of the equation is non-Lipschitzian. In the classical results [33], the
Lipschitz condition is used to control the nonlinearity and, effectively, the proof of
convergence is technically almost the same as in the linear case. According to our best
knowledge, there is scarce literature concerning similar non-Lipschitzian problems.
A very interesting paper is [8] where an iterative technique has been applied and
convergence proofs given. Moreover, in [9] a short summary of the theoretical and
numerical character has been published. Lastly, we mention our own work [41] from
which the present considerations stem. In that paper we have given the convergence
proof assuming the kernel’s separation from zero. In the present discussion we relax
this assumption.
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The main result of this paper is a construction of a family of numerical schemes
used to solve (1.1). This family is indexed with specific quadratures used to discretize
the corresponding Volterra integral equation. That is to say, choosing a method of
calculating the integral picks a member of that family. We then show that for a
particular quadrature the constructed numerical scheme is convergent provided that
m is constrained with respect to α. In practice m has to be sufficiently large only for
small values of α. On the other hand, if we use the midpoint method as a quadrature
and take α ≥ 0.6, the convergence of the method is guaranteed for all m ≥ 1, which is
the usual assumption for (1.1). Moreover, as experiments investigating construction
materials found (see [20, 14, 29, 43]), the subdiffusion parameter α usually is close
to 1. Therefore, according to our results the numerical method is convergent for any
meaningful m in the experimental range of α.

The paper is structured as follows. In the second section we formulate the prob-
lem in terms of the Volterra setting starting from the self-similar form of the time-
fractional porous medium equation. We proceed to the main results in the third
section where a construction of a convergent method is given. We end the paper with
numerical simulations illustrating our results.

2. Problem statement. The straightforward numerical approach is to start
with (1.1) and, for example, apply a finite difference scheme supplemented with lin-
earization to discretize it. This has been done in [38] (but see also the recent approach
in [22]) but the authors noted a very large computational cost and stability issues
caused by the interplay of two factors: nonlocality (of the fractional derivative) and
nonlinearity (of the flux). A more sensible strategy is to transform (1.1) into its
self-similar form and then derive an appropriate numerical scheme. We begin with
necessary preparations.

Since the initial-boundary conditions (1.3) are self-similar, we can substitute
η = xt−α/2 for some 0 < α < 1, which by denoting u(x, t) = U(xt−α/2) yields

(UmU ′)
′

=

[
(1− α)− α

2
η
d

dη

]
I0,1−α
− 2
α

U, 0 < α < 1,(2.1)

with the boundary conditions

U(0) = 1, U(∞) = 0.(2.2)

Here, Ia,bc is the Erdélyi–Kober operator [25, 26, 45]

Ia,bc U(η) =
1

Γ(b)

∫ 1

0

(1− s)b−1saU(s
1
c η)ds.(2.3)

Notice that (2.1) is an ordinary integrodifferential equation which should be more
tractable for numerical work than (1.1).

There is another transformation that can be done in order to simplify the matters
even more. Notice that due to (2.2) our problem has a free boundary, which can cause
difficulties to resolve it numerically (for some details see [12]). However, there exists
a substitution that can take (2.1) into an equivalent initial-value problem. Physical
reasons as well as theoretical considerations suggest that the solution of (2.1) has a
compact support, i.e., there exists a point η∗ ≥ 0 such that

U(η) = 0 for η ≥ η∗.(2.4)
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This simply means that the wetting front propagates at a finite speed that has a
fundamental significance for the physical experiment [20]. The rigorous proof that
the solution of the classical version of the porous medium equation has a compact
support has been given for example in [3]. Similar results for the spatially nonlocal
case are a subject of vigorous work and, for example, the compact support property
has been proven in the last few years (see [46] and for a thorough survey [50]). As
for our time-fractional case, in [42] we have shown that there exists exactly one self-
similar solution of (1.1) possessing the compact support. The method that we used
there was based on application of the sub- and supersolution technique to (2.1) (in
particular, Bushell’s theorem [10]). This method was powerful enough to overcome
the difficulty of the non-Lipschitz nonlinearity when showing uniqueness. Along with
that we have obtained some estimates on the size of the support. The method that we
develop below can be used to numerically compute the approximation of this unique
solution.

Having in mind the above discussion we are motivated to substitute

U(η) =
(
m(η∗)2

) 1
m y(z), z = 1− η

η∗
,(2.5)

which changes (2.1) into

m(ymy′)′ =

[
(1− α) +

α

2
(1− z) d

dz

]
Fαy, 0 < α < 1, 0 ≤ z ≤ 1,(2.6)

where the linear operator Fα is defined by

Fαy(z) :=
1

Γ(1− α)

∫ 1

(1−z)
α
2

(1− s)−αy(1− s− 2
α (1− z))ds.(2.7)

The integrand above has two singular points: s = 0 and s = 1. Since (1−z)α/2 ≤ s ≤ 1
only the latter one is relevant, and the integral is convergent because 0 < α < 1.
Further, the transformation (2.5) yields a formula for the wetting front position

η∗ =
1√

my(1)m
.(2.8)

This formula can be used to calculate the front of the moisture at a particular time
via the similarity transformation. That is to say, the first point at which the moisture
vanishes is η∗tα/2.

Lastly, (2.6) can be integrated twice and transformed into a Volterra integral
equation

y(z)m+1 =
m+ 1

m

∫ z

0

(α
2

+
(

1− α

2

)
z − v

)
Fαy(v)dv,(2.9)

which is of the main interest for this paper. It is a Volterra equation in which the
nonlinear term is non-Lipschitz.

We can manipulate the integrand of (2.9) in order to write the kernel explicitly.
This would simplify the subsequent numerical implementation. To start, change the
variable u = 1− s− 2

α (1− z) in the definition of Fα given by (2.7) to obtain

Fαy(z) =
α

2

(1− z)α2
Γ(1− α)

∫ z

0

(
1−

(
1− z
1− u

)α
2

)−α
(1− u)

−α2−1
y(u)du.(2.10)
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The singular points of the above integrand are at u = z and u = 1. Since 0 < u <
z < 1 the only meaningful singularity is the former. In that case(

1−
(

1− z
1− u

)α
2

)−α
=

(
z − u
1− z

)−α((
2

α

)α
+O(z − u)

)
as u→ z−,(2.11)

and hence due to the fact that 0 < α < 1 the integral is convergent. Now, plugging
the above formula into (2.9) and changing the order of integration (Fubini’s theorem)
we obtain

y(z)m+1 =
m+ 1

m

α

2

1

Γ(1− α)

×
∫ z

0

∫ z

u

(α
2

+
(

1− α

2

)
z − v

)
(1− v)

α
2

(
1−

(
1− v
1− u

)α
2

)−α
dv

 y(u)

(1− u)
α
2 +1

du.

(2.12)

To simplify further we can substitute s =
(

1−v
1−u

)α
2 and arrive at

y(z)m+1

=

∫ z

0

m+ 1

m

1

Γ(1−α)

∫ 1

( 1−z
1−u )

α
2

(
s

2
α (1−u)−

(
1−α

2

)
(1−z)

)
s

2
α (1−s)−α ds︸ ︷︷ ︸

K(z,u)

 y(u)du.

(2.13)

Finally, we can notice the kernel K can be written in terms of the incomplete beta
function defined by

B(z, a, b) :=

∫ z

0

(1− s)a−1sb−1ds.(2.14)

Hence,

y(z)m+1 =

∫ z

0

K(z, u)y(u)du,(2.15)

where for 0 ≤ u ≤ z we have

K(z, u) :=
m+ 1

m

1

Γ(1− α)

×

[
(1− u)

(
B

(
4

α
+ 1, 1− α

)
−B

((
1− z
1− u

)α
2

,
4

α
+ 1, 1− α

))

−
(

1− α

2

)
(1− z)

(
B

(
2

α
+ 1, 1− α

)
−B

((
1− z
1− u

)α
2

,
2

α
+ 1, 1− α

))]
.

(2.16)
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It is evident that the kernel is positive and continuous with a singular derivative. A
class of equations similar to the above has been a subject of very active investiga-
tions. The non-Lipschitzian character of (2.15) is manifestly clear if we write it in an
equivalent form by substituting w = ym+1 and obtaining

w(z) =

∫ z

0

K(z, u)w(u)
1

m+1 du.(2.17)

Since the nonlinearity is of a root type for m > 0 it does not satisfy the Lipschitz
condition. For readability, in further studies we will analyze the equation in the
previous form (2.15).

Notice that according to the existence and uniqueness result in the previously
cited paper [42] there is no loss of generality when going from (1.1) with (1.3) to
(2.15) with (2.16). And hence, the latter problem is equivalent to the former. The
inverse transformation is based on first calculating the wetting front from the formula
(2.8) and then using (2.5) with the self-similar transformation to have

u(x, t) =
y
(

1−
√
my(1)m xt−

α
2

)
y(1)

, where 0 ≤ x ≤ t
α
2√

my(1)m
, t > 0.(2.18)

For important results stating the existence and uniqueness for (2.15) for the general
case the reader is invited to consult [10, 23, 36].

3. Numerical method. Let us begin with introducing the uniform grid

zn :=
n

N
, h :=

1

N
, n = 0, 1, . . . , N,(3.1)

where the total number of grid points N is fixed. We further discretize the integral
equation (2.15) by applying an arbitrary open quadrature to its right-hand side∫ zn

0

K(zn, t)y(t)dt = h

n−1∑
i=1

wn,iK(zn, zi)y(zi) + δn(h),(3.2)

where δn(h) is the local consistency error. Furthermore, we define the maximal error

δ(h) := max
1≤n≤N

|δn(h)|,(3.3)

and for the weights we assume their positivity and boundedness

0 < wn,i ≤W for 1 ≤ i ≤ n ≤ N.(3.4)

Finally, by truncating the local consistency error we can propose the following scheme
for solving (2.15)

ym+1
n = h

n−1∑
i=1

wn,iKn,i yi, n = 2, 3, . . . , N,(3.5)

where Kn,i := K(zn, zi).
Overall, the scheme (3.5) is a family of numerical methods indexed by the choice

of the weights. These, in turn, are taken from the corresponding quadrature for
calculating the integral (3.2). For example, the rectangle method can be implemented
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by taking wn,i = 1. In the sequel we use the midpoint quadrature in which the first
step is calculated by the trapezoidal rule

wn,i =

 2 if (−1)n+i = −1 and i > 1,
1
2 if (−1)n = −1 and i ∈ {0, 1} ,
0, otherwise,

n > 1.(3.6)

In general, the formula for wn,i can be taken from any open Newton–Cotes rule for
approximating integrals (see [1], sections 25.4.21–27) or a combination of them. The
main result of this paper states that, provided that certain technical conditions are
met (to be stated in Theorem 3.5), there is a subfamily of methods (3.5) that are
convergent to the solution of (2.15).

The objective of the following is to prove that (3.5) is convergent provided we
choose an appropriate starting value y1 for possibly the widest choice of quadratures.
From (2.16) we notice that K(1, 1) = 0 and thus the kernel is not separated from
zero. Hence, we cannot use our previous results from [41]. It is instructive, however,
to see what are the differences between the usual case of Lipschitzian nonlinearity and
ours. In the former, we are quickly able to write the estimate on the scheme’s error
en = yn − y(nh) in the form (see [33])

|en| ≤ Ah
n−1∑
i=1

|ei|+B,(3.7)

where A and B = B(h) are independent of n. The above recurrence inequality can
be thought as a discrete version of the Gronwall–Bellman’s lemma (G-B). It can be
easily solved giving

|en| ≤ B(h)eAnh.(3.8)

In our case B(h) is associated with the quadrature’s local consistency error and hence
vanishes as h → 0. If, additionally, we require that nh → const. to account for a
comparison at a fixed point, the above estimate shows that en → 0 as we refine the
grid. The method is thus convergent.

The point when Lipschitz condition comes into play in (3.7) is the form of the
terms |ei| inside the sum. Thanks to the Lipschitzian nonlinearity the estimate is
essentially the same as in the linear case. When we relax this requirement the form
of the recurrence estimate quickly gets complicated and relies on specific estimates
used for a particular nonlinearity. For example, in general the summand can be a
nonlinear function of n, i, or |ei|. It is then impossible to apply the classical version
of the G-B lemma to solve the recurrence. However, it is possible, to obtain a result
analogous to (3.7) by a careful exploitation of the root-type nonlinearity of (2.15).
Then, a more complex variation of G-B lemma can be proved to close the recurrence.
We will see the details below.

Several ingredients from our developing theory will be useful. The first is a simple
consequence of the integral equation structure and discretization scheme.

Proposition 3.1. Let y be the nontrivial solution of (2.15) and yn are con-
structed via the iteration (3.5). If δn(h) in (3.2) is nonnegative (nonpositive) for all
n = 1, 2, . . . , N , then y(nh) ≥ yn (y(nh) ≤ yn) provided that y(h) ≥ y1 (y(h) ≤ y1).

This monotonicity result has been proved in [41]. The second piece of information
about the solution of (2.15) concerns the global estimates (for the proofs of the next
two lemmas, see [42]).
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Lemma 3.2. Let y be the nontrivial solution of (2.15). Then, the following esti-
mates take place

C1z
2−α
m ≤ y(z) ≤ C2z

2−α
m , 0 ≤ z ≤ 1, 0 < α ≤ 1,(3.9)

where C1,2 are given by

C1 =


((

α
2

)1−α Γ( 2−α
m )

Γ(2−α+ 2−α
m )

1
2−α+m(3−α)

) 1
m+1

, 0 < α ≤ 1− 1
m+1 ;((

α
2

)2−α Γ(1+ 2−α
m )

Γ(2−α+ 2−α
m )

1
2−α

) 1
m+1

, 1− 1
m+1 < α ≤ 1;

C2 = Γ(3− α)−
1

m+1 .

(3.10)

Our solution is thus bounded from below and above by a power function of the same
class. As it appears, something more detailed can be said about the behavior of y at
the origin.

Lemma 3.3. The solution y = y(z) of (2.15) satisfies

y(z) ∼
(α

2

)2−α Γ
(

2−α
m

)
Γ
(
1− α+ 2−α

m

) z
2−α
m

(2− α)
(
1 + 1

m

)
− 1

as z → 0+, 0 < α ≤ 1.

(3.11)

The asymptotics is thus of power type and the constant of proportionality is known.
As a quick application of the above lemma we propose a sensible choice of the starting
value for the numerical method

y1 :=
(α

2

)2−α Γ
(

2−α
m

)
Γ
(
1− α+ 2−α

m

) h
2−α
m

(2− α)
(
1 + 1

m

)
− 1

,(3.12)

which introduces the starting error of higher order than h
2−α
m as h→ 0+.

Now, we proceed to the proof of the fact that (3.5) is convergent. First, we state
an auxiliary lemma which can be thought as a generalization of the discrete G-B (for
a thorough review of similar results, see [2]).

Lemma 3.4. Let {en}, n = 1, 2, . . . be a sequence of positive numbers satisfying

en ≤
1

nβ

(
A

n−1∑
i=1

(n− i)γ ei +B

)
, n ≥ 2,(3.13)

where A, B are positive constants, β ≥ 1, and γ ≥ 0. Then, provided that e1 ≤ B we
have

en ≤ B
f(n)

nβ
,(3.14)

where f(1) = 1 and

f(n) = 1 +Anγ

n−1∏
j=2

(
1 +Ajγ−β

)
+

n−1∑
i=2

1

iβ

n−1∏
j=i+1

(
1 +Ajγ−β

) , n ≥ 2.(3.15)

Proof. The proof proceeds by mathematical induction. The right-hand side of
(3.14) reduces to B for n = 1 (with the usual convention for the product:

∏0
i=1 = 1)

which yields e1 ≤ B. The initial inductive step is thus satisfied by the assumption.
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Assume now that (3.14) is satisfied for (n − 1)th term. We will show that this
also is the case for en. To this end, use the inductive assumption to obtain

en ≤
B

nβ

(
A

n−1∑
i=1

(n− i)γ f(i)

iβ
+ 1

)
.(3.16)

We can immediately estimate the sum to obtain

en ≤
B

nβ

(
Anγ

n−1∑
i=1

f(i)

iβ
+ 1

)
.(3.17)

In order to make the above inequality to satisfy the assertion we require that

Anγ
n−1∑
i=1

f(i)

iβ
+ 1 = f(n), f(1) = 1.(3.18)

We will show that the solution of this nonlocal recurrence equation is equal to (3.15).

Define g(n) :=
∑n−1
i=1 f(i)i−β , and notice that

g(n+ 1)− g(n) =
f(n)

nβ
, g(2) = 1.(3.19)

Hence, thanks to (3.18) we have

Anγg(n) + 1 = nβ (g(n+ 1)− g(n)) , g(2) = 1.(3.20)

After rearranging we obtain the following nonhomogeneous recurrence relation

g(n+ 1) = n−β +
(
1 +Anγ−β

)
g(n), g(2) = 1.(3.21)

To simplify the notation we temporarily introduce a(n) := n−β and b(n) := 1+Anγ−β

and solve the following equation by the successive iteration

g(n+ 1) = a(n) + b(n)g(n) = a(n) + a(n− 1)b(n) + b(n)b(n− 1)g(n− 1)

= a(n) + a(n− 1)b(n) + a(n− 2)b(n− 1)b(n) + b(n)b(n− 1)b(n− 2)g(n− 2)

= · · ·

(3.22)

Continuing in this inductive fashion we can show that

g(n+ 1) =

n∏
j=2

b(j) +

n∑
i=2

a(i)

n∏
j=i+1

b(j),(3.23)

where the convention
∏1
j=2 = 1 is used. Going back to the original variables we have

g(n+ 1) =

n∏
j=2

(
1 +Ajγ−β

)
+

n∑
i=2

1

iβ

n∏
j=i+1

(
1 +Ajγ−β

)
, n ≥ 1,(3.24)

and if we use (3.18) and the definition of g(n), we can state the result in terms of the
f(n) function

f(n) = 1 +Anγ

n−1∏
j=2

(
1 +Ajγ−β

)
+

n−1∑
i=2

1

iβ

n−1∏
j=i+1

(
1 +Ajγ−β

) , n ≥ 2.(3.25)

This concludes the proof.

Having the above in hand we can state the main result.
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Theorem 3.5. Assume that 0 ≤ z ≤ X < 1, and let yn be the calculated from
(3.5) approximation of the solution of (2.15). Moreover, define the error en := yn −
y(nh), and assume that |e1| ≤ 1

(m+1)Cm1

δ(h)
h2−α , where C1 is from Lemma 3.2. Then, for

a quadrature with δn(h) ≤ 0 for every n ∈ N we have

|en| ≤ const.× δ(h)hα−A−1 as h→ 0+ with nh→ zn,(3.26)

with A = WD
(m+1)Cm1

, where W is from (3.4), and D = m+1
2m

1
Γ(2−α)

(
1

1−X

)1−α
.

Proof. Notice that by the assumption and Proposition 3.1 we have en :=
yn − y(nh) ≥ 0. Using Lagrange’s mean-value theorem we obtain

ym+1
n − y(nh)m+1 = (m+ 1)ξmn en,(3.27)

where y(nh) ≤ ξn ≤ yn. On the other hand, from (2.15) and (3.2)

ym+1
n − y(nh)m+1 = h

n−1∑
i=1

wn,iKn,iei − δn(h) ≤ h
n−1∑
i=1

wn,iKn,iei + δ(h).(3.28)

Therefore, from (3.4)

(m+ 1)y(nh)men ≤Wh

n−1∑
i=1

Kn,iei + δ(h).(3.29)

Now, using Lemma 3.2 we can estimate the left-hand side

(m+ 1)Cm1 (nh)2−αen ≤Wh

n−1∑
i=1

Kn,iei + δ(h).(3.30)

The next step is to find an appropriate bound for the kernel K. To this end we go
back to (2.13) and notice that

s
α
2 (1− u)−

(
1− α

2

)
(1− z) = s

α
2 (1− u)

[
1− s−α2

(
1− α

2

) 1− z
1− u

]
≤ 1

2
,(3.31)

because ( 1−z
1−u )α/2 ≤ s ≤ 1. Hence,

K(z, u) ≤ m+ 1

2m

1

Γ(1− α)

∫ 1

( 1−z
1−u )α/2

(1− s)−αds

=
m+ 1

2m

1

Γ(2− α)

(
1−

(
1− z
1− u

)α/2)1−α

.

(3.32)

Moreover, by convexity(
1−

(
1− z
1− u

)α/2)1−α

=

(
1−

(
1− z − u

1− u

)α/2)1−α

≤
(
z − u
1− u

)1−α

.(3.33)

Finally,

K(z, u) ≤ m+ 1

2m

1

Γ(2− α)

(
z − u
1−X

)1−α

=: D (z − u)
1−α

,(3.34)

where we have used the assumption that 0 ≤ z ≤ X < 1.
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Now, going back to (3.30) and noticing that zn − zi = h(n− i) we can write

en ≤
1

n2−α

(
WD

(m+ 1)Cm1

n−1∑
i=1

(n− i)1−αei +
1

(m+ 1)Cm1

δ(h)

h2−α

)

=:
1

n2−α

(
A

n−1∑
i=1

(n− i)1−αei +B

)
.

(3.35)

This form of the inequality can be plugged into Lemma 3.4 to yield

en ≤
1

(m+ 1)Cm1

δ(h)

(nh)2−α f(n).(3.36)

It is interesting for us to learn how the function f behaves asymptotically as n→∞.
To see the exact order we write it explicitly as

f(n) = 1 +An1−α

n−1∏
j=2

(
1 +

A

j

)
+

n−1∑
i=2

1

i2−α

n−1∏
j=i+1

(
1 +

A

j

) , n ≥ 2.(3.37)

First, we can use Stirling’s formula to obtain

n−1∏
j=2

(
1 +

A

j

)
=

Γ(n+A)

Γ(n)Γ(2 +A)
∼ nA

Γ(2 +A)
(3.38)

as n→∞. Similarly,

n−1∑
i=2

1

i2−α

n−1∏
j=i+1

(
1 +

A

j

)
=

Γ(n+A)

Γ(n)

n−1∑
i=2

1

i2−α
Γ(i+ 1)

Γ(i+ 1 +A)

∼ nA
(

1

Γ(2 +A)
+

∞∑
i=2

1

i2−α
Γ(i+ 1)

Γ(i+ 1 +A)

)(3.39)

as n→∞. Therefore, because nh remains bounded for large n, we have

en ≤ const.× δ(h)hα−A−1 as n→∞.(3.40)

This concludes the proof.

Up to this point we have a result stating that a family of numerical methods
(3.5) with δn(h) ≤ 0 will be convergent provided that the constant A is sufficiently
small. Notice that since by Lemma 3.3 the solution y is not regular at z → 0+ we do
not have to (and ought to!) use a high-order quadrature. Moreover, since y(z)m+1

is Lipschitz continuous for X ≤ z ≤ 1, the classical theory of numerical methods for
integral equations works on that interval. Hence, we are only interested in solving
(2.15) for the neighborhood of zero, i.e., 0 ≤ z < X. Eventually, X can be made
sufficiently small.

As an example of the above we choose the quadrature to be the midpoint method
and formulate the result as a corollary.

Corollary 3.6. Assume that 0 ≤ z ≤ X < 1, and let yn be the calculated from
(3.5) approximation to the solution of (2.15). If the quadrature (3.2) is chosen to be
the midpoint method (3.6), i.e., y1 chosen according to (3.12) and
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ym+1
2n+k =

1

2
hK2n+k,k yk + 2h

n∑
i=1

K2n+k,2i+k−1 y2i+k−1, k ∈ {0, 1} , n > 1,(3.41)

then it is convergent provided that

m > 2− α and A =
2

m

1

Cm1 Γ(2− α)(1−X)1−α < α+
2− α
m

.(3.42)

Moreover, the order of convergence is not smaller than

2− (2− α)

(
1− 1

m

)
− 2

m

1

Cm1 Γ(2− α)(1−X)1−α .(3.43)

Proof. We have to check whether the assumptions of Theorem 3.5 are satisfied.
First, it is an easy geometrical reasoning to ascertain that δn(h) ≤ 0 when y is locally
a concave function (for details, see [41]). This is precisely the present case due to
Lemma 3.3 and the assumption that m > 2− α (since 0 < α < 1).

As was noted in [16] the midpoint quadrature for a nonsmooth function will, in
our case, have an order of δ(h) ∝ h1+(2−α)/m (in contrast with the second order
for smooth functions). Since we are initializing the iteration from (3.12), which is an
asymptotic form of the solution at z → 0+, the starting error will be µ = o(h(2−α)/m).
The number (2− α)/m is always greater than 1 + (2− α)/m− 2 + α, and hence |e1|
will be smaller than const. × δ(h)hα−2 for sufficiently small h. The assumption of
Theorem 3.5 concerning the initial step is thus satisfied.

Finally, we can estimate the convergence error. From Theorem 3.5 we have

|en| ≤ const.× h1−(2−α)(1− 1
m )−A+1.(3.44)

To prove the convergence we have to show that the exponent is a positive constant.
To this end notice that by the assumption

1− (2− α)

(
1− 1

m

)
−A+ 1 > 1− (2− α)

(
1− 1

m

)
(3.45)

−α− 2− α
m

+ 1 = 1− 2 + α− α+ 1 = 0.

Therefore the method is convergent.

From Lemma 3.2 we see that Cm1 is bounded for any m ≥ 1, and hence, the last
term in (3.43) can be arbitrarily close to zero for sufficiently large m. Moreover, we
can see that the theoretical estimate on the convergence error converges to α for large
m. Therefore, the method is convergent for any 0 < α < 1 for sufficiently large m.

4. Numerical calculations. We illustrate above results by a series of numerical
examples. First, we will determine the empirical order of convergence by approximat-
ing the solution of (2.15) by (3.41) for different values of α and m. In each simulation
we approximate the order with the use of the Aitken’s method (it finds the order
by extrapolation and refinement of the grid with n, 2n, and 4n steps; see [33]) and
compare it to the theoretical estimate (3.43). The results obtained in MATLAB are
given in Table 1.

First, we have to remark that obtaining an accurate value of the order of conver-
gence is demanding on the computer power. We have settled to choosing N = 3×103

as the number of subdivisions of the [0, 1] interval (hence, the maximal division in
Aitken’s method is 1.2× 104).
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Table 1
Results of the simulations done for n = 3000. Theoretical estimate on the order has been

written only when (3.43) gave a positive value.

α m Empirical order Theoretical order (3.43)

α = 0.1
m = 1 0.69 –
m = 10 0.46 –
m = 100 0.14 –
m = 1000 0.68 –
m = 10000 0.98 0.09

α = 0.2
m = 1 0.68 –
m = 10 0.51 –
m = 100 0.39 –
m = 1000 0.93 0.14

α = 0.3
m = 1 0.65 –
m = 10 0.55 –
m = 100 0.62 0.05
m = 1000 0.96 0.27

α = 0.4
m = 1 0.54 –
m = 10 0.60 –
m = 100 0.78 0.26
m = 1000 0.95 0.38

α = 0.5
m = 1 1.02 –
m = 10 0.66 –
m = 100 0.87 0.41
m = 1000 0.93 0.49

α = 0.6
m = 1 1.01 0.15
m = 10 0.73 0.12
m = 100 0.92 0.55
m = 1000 0.90 0.59

α = 0.7
m = 1 0.90 0.44
m = 10 0.81 0.39
m = 100 0.95 0.66
m = 1000 0.86 0.69

α = 0.8
m = 1 0.86 0.68
m = 10 0.89 0.59
m = 100 0.96 0.77
m = 1000 0.82 0.79

α = 0.9
m = 1 0.84 0.88
m = 10 0.96 0.76
m = 100 0.96 0.88
m = 1000 0.78 0.89

α = 0.99
m = 1 0.82 1.04
m = 10 1.00 1.07
m = 100 0.96 0.98
m = 1000 0.74 0.98

Notice that for α → 1− the method order approaches 1 both theoretically (for
large m) and empirically. For smaller values of α the empirical order gets lower,
but this fact can be due to the singularity of the kernel (2.16) at α = 0, which is
difficult to resolve numerically. In many cases the theoretical estimate is lower than
the numerically found value of the order. This was anticipated since the value (3.43) is
not optimal—it depends on the bound from Lemma 3.2, which might not be accurate
enough. It also may be conjectured that, guessing from our simulations, the true
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order of the method is equal to 1 for, at least, α close to unity. The verification of
this claim requires more refined proof techniques and numerical simulations, which is
the main goal of our future work. Overall, the numerical simulations show that (3.41)
is convergent for any m and α that we have chosen with an indication that it may
converge for the whole admissible range of these parameters.

In the second experiment we use (3.41) to calculate the wetting front position
(2.8), which is of utmost importance in the physical experiment. It basically indicates
how far the water has percolated at a given time. The results of our calculations are
given on Figure 1. The graph presents η∗ as a function of 1 ≤ m ≤ 100 plotted on
log-log scale for α ∈ {0.1, 0.5, 0.9, 1}. The calculation for the classical diffusion with
α = 1 has been added for a comparison. There is a clear monotone relation between
η∗ and m for fixed α and vice versa. The power law when m → ∞ can be easily
obtained from Lemma 3.2 and (2.8). To this end notice that y(1)m is always bounded
and hence from (2.8) we have

D1√
m
≤ η∗ ≤ D2√

m
as m→∞(4.1)

for some constants D1,2. Therefore, η∗ for fixed α is bounded by power functions of
the type m−1/2. We can observe this fact on the log-log plot on Figure 1. For large
m all curves have the same tangent equal to − 1

2 .
Some exemplary self-similar profiles of solutions to (1.1) are depicted on Figure 2.

They have been calculated with the use of (2.5). Functions are monotone decreasing

100 101 102

m

10-1

100

101

102

*

 = 0.1
 = 0.5
 = 0.9
 = 1

ref. lin. m-1/2

Fig. 1. Wetting front position (2.8) for different α and m on a log-log scale. The reference line
m−1/2 plotted in bold has been added for comparison. Here, the number of divisions is n = 3000.
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Fig. 2. Self-similar solutions of (1.1) plotted for m = 1 and several values of α. Here, the
number of divisions is n = 3000.

and have a compact support which confirms our intuition and was rigorously proved
in [42]. Once again, we can see that η∗ decreases with increasing α.

Finally, we would like to present a comparison between our method and the one
used in [38]. The latter is a finite difference discretization of the original PDE (1.1)
with a linearization of the diffusivity. Notice that, intuitively, numerically solving
(1.1) should be inferior to using (3.5) since it involves discretizing two independent
variables rather than one. Linearization done in each step is also a factor that can
introduce errors.

Let uij denote the numerical approximation u(jk, il) being the solution to (2.15)
where k and l are the spatial and temporal steps. Also fix X > 0 and T > 0 to be the
bounds of the space-time domain. The method used in [38] is the θ-weighted implicit
finite difference

ui+1
j − (1− θ) hα

k2Γ(2− α)

(
Di+1
j−1/2u

i+1
j−1 +

(
Di+1
j−1/2 +Di+1

j+1/2

)
ui+1
j +Di+1

j+1/2u
i+1
j+1

)
= −

i∑
k=1

ak,iu
k
j +θ

hα

k2Γ(2−α)

(
Di
j−1/2u

i
j−1+

(
Di
j−1/2 +Di

j+1/2

)
uij+D

i
j+1/2u

i
j+1

)
,

(4.2)

where the weights are defined by

ak,i = (i− k + 2)1−α − 2(i− k + 1)1−α + (i− k)1−α,(4.3)
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and Di
j±1/2 is the linearized value of the diffusion coefficient

Di
j±1/2 =

1

2

(
(um)ij +m(um−1)ij

(
uij − ui−1

j

)
+ (um)ij±1/2 +m(um−1)ij±1/2

(
uij±1/2 − u

i−1
j±1/2

))
.

(4.4)

For stability reasons we require that the spatial and temporal grids have to be inter-
related

kl−
α
2 = λ = const.(4.5)

For a benchmark of our method suppose that we would like to calculate the wetting
front using (2.8) and (4.2). To compare those two methods we fix the grid spacing
of (3.41), i.e., h, and have to set k and l to produce a similar accuracy for the self-
similar variable xt−α/2. In order to calculate the wetting front with (4.2) we iterate
the scheme up to the final time T , find the zero x∗(T ) of the function u(·, T ), and
compute

η∗FD = x∗(T )T−
α
2 .(4.6)

Now, we have to specify the correct values of k and l according to h in order to
evaluate η∗ with a similar accuracy for our two methods. For a fixed time t = T the
difference between two consecutive grid points of the self-similar variable is taken to
be equal to h:

(j + 1)kT−
α
2 − jkT−α2 = h.(4.7)

Simplifying and using (4.5) we obtain

l = T

(
h

λ

) 2
α

.(4.8)

Immediately we notice one difficulty in numerical calculations. Since the exponent
in the above formula is at least equal to 2, the time spacing l can quickly become
prohibitively small (especially for small values of α). Therefore, it is much more
convenient and less demanding on computer power to use the discretization of the
integral equation (2.15) rather than the original PDE (1.1).

We illustrate the above remarks with an example. We calculate the reference
value of η∗REF with (3.41) using sufficiently large number of divisions, say, 3000. We
fix T = 0.1 and X = γη∗REFT

−α/2, where γ > 1 (here we take γ = 1.1). The choice
of X is motivated by the fact that it will always be larger than the support of u at
any time. We have h = 1/n and further calculate k, l using (4.8) and (4.5). Now,
compute the wetting front once from (2.8), call it η∗INT , and once from (4.6). We
further require that

max {|η∗REF − η∗FD| , |η∗REF − η∗INT |} ≤ ε,(4.9)

where ε > 0 is some arbitrarily chosen tolerance.
Results of numerical calculations are given in Table 2. The benchmark comparing

two methods is the time factor

τ =
calculation time with (4.2)

calculation time with (3.41)
.(4.10)
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Hence, the number τ shows how much the finite difference method is slower than the
scheme based on the integral equation. Due to very high computational price of the
finite difference method we have chosen to aim for only modest accuracy in calculating
the wetting front. That is to say, we have put m = 1, n = 100, ε = 0.5, λ = 0.5,
and α ∈ {0.75, 0.9, 0.99}. Immediately it is evident that the integral equation method
(3.41) is far superior from the finite difference (4.2) in calculating the wetting front.
The time factor for small α grows very fast and we have resigned from repeating
calculations for α < 0.75. However, we clearly see that the important parameter η∗

can be readily and accurately computed with (3.41). Moreover, having the self-similar
solution U it is just a matter of using (2.18) to obtain the space-time representation
of the diffusion.

Table 2
Comparison between finite difference method (4.2) and midpoint method (3.41) in calculating

the wetting front. Here, m = 1, n = 100, ε = 0.5, and λ = 0.5.

α 0.75 0.9 0.99

τ 2.22 × 104 1.17 × 103 2.51 × 102

5. Conclusion. We have devised a convergent numerical method for solving the
nonlocal nonlinear porous medium equation. Due to the non-Lipschitzian nonlinear-
ity, the classical proof methods could have not been used. Our approach gives an
estimate on the convergence error, but it is clear that it does not cover all of the
admissible (α,m) parameter space and is not optimal. One of the reasons is the C1

constant that enlarge the essential exponent A. The object of our future work will be
to overcome this difficulty and obtain more strict bounds on the convergence order.
On the other hand, as Table 1 indicates, the whole admissible range of m is allowed for
α ≥ 0.6, which is consistent with the experimental results mentioned in the introduc-
tion. Moreover, numerical simulations show that the method should be convergent for
m > 1 and every α ∈ (0, 1). In the future we are planning to prove this analytically.
The comparison with the finite difference scheme (4.2) indicates that our method
is superior in performance and is able to compute the solution of the subdiffusion
diffusion equation very quickly.
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[36] W. Okrasiński, On a nonlinear ordinary differential equation, Ann. Polon. Math., 3(49), 1989,
pp. 237–245.

[37] Y. Pachepsky, D. Timlin, and W. Rawls, Generalized Richards’ equation to simulate water
transport in unsaturated soils, J. Hydrology, 272 (2003), pp. 3–13.

[38]  L. P lociniczak, Approximation of the Erdélyi–Kober operator with application to the time-
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