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Theorem (Banach fixed-point theorem, 1920)
Every Lipschitz contraction on complete metric space has unique
fixed point.

Here f : X → X is a Lipschitz contraction iff existst c ∈ [0, 1) s.t.
for every x , y ∈ X

d(f (x), f (y)) ≤ c · d(x , y).



Topological contraction

Definition
Let X be a T1-topological space and f : X → X .
We say that f is a topological contraction on X iff for every open
cover U of X there are U ∈ U and n ∈ ω s.t. f n[X ] ⊆ U

Theorem (Lebesgue number)
For every compact metric space, X and any open cover U there
exists ε > 0 s.t.

∀x ∈ X∃U ∈ U B(x , ε) ⊆ U.

Fact
Every Lipschitz contraction on a compact metric space is a
topological contraction.



Fixed point theorem for compact T1 spaces

Theorem
Let X be T1 compact topological space and f : X → X be a
closed topological contraction on X . Then there exsists an unique
x ∈ X s.t. x = f (x).

Corollary
Every Lipschitz contraction on compact metric space has unique
fixed point.

Example
Let (ω, τ) be T1 topological space where

τ = {∅} ∪ {A ∈P(ω) : Ac is finite }.

Then ω 3 n 7→ f (n) = n + 1 ∈ ω is a continuous, topological
contraction without any fixed point, (f is not closed map !!!).



Lipschitz contraction is continuous but topological not neccessary.

Example
Let X = {1/n : n ∈ N} ∪ {0, 2, 3} be endowed with the usual
Euclidean metric from the real line. Let for x ∈ X :

f (x) :=

{
2 if x = 1/n,
3 if x = 0, 2, 3.

The mapping f is a closed topological contraction because
f 2[X ] = {3}; it is closed because f [X ] = {2, 3}; and it is not
continuous because

f

(
lim
n

1
n

)
= f (0) = 3 6= 2 = lim

n
f

(
1
n

)
.

Here fixed point here is 3. Moreover, f ⊆ X × X is not closed set.



Weak Čech completeness

Definition
Tychonoff topological space X is Čech complete if

- exists {Ui : i ∈ ω}, Ui - open cover of X for i ∈ ω,

- for every centered {Fm ∈ Clo(X ) : m ∈ ω} s.t.
∀i ∈ ω ∃m ∈ ω ∃U ∈ Ui Fm ⊆ U

then
⋂
{Fm m ∈ ω} 6= ∅.

If we drop assumption that X is Tychonoff space then X is weak
Čech complete.

Theorem
If X is a T1 weak Čech complete space and f : X → X is a
topological contraction, then f has a unique fixed point.



Weak contraction (or feebly topologically contractive)

Definition (Kupka)
Let X - topological space, then f : X → X is weak topological
contraction if for each open cover U we have

∀x , y ∈ X ∃n ∈ ω ∃U ∈ U f n[{x , y}] ⊆ U

Theorem (Kupka, 1998)
If X top. space f : X → X s.t.
I f has closed graph,
I f is weak top. contraction

then f has fixed point. Moreover, if X is T1 then fixed point is
unique.

Corollary
If X is a Hausdorff topological space and f is a continuous weak
topological contraction on X , then f has a unique fixed point.



Theorem
If X is a Hausdorff first-countable topological space and f is a
closed weak topological contraction on X , then f has a unique
fixed point.

Definition (Atsuji space)
Complete metric space is Atsuji if Lebesgue number Theorem is
true.

Corollary (Beer)
Let (X , d) be an Atsuji space and f : X → X be a continuous (or
closed) mapping. If there exists an x0 ∈ X such that
lim infn→∞ d(f n(x0), f

n+1(x0)) = 0, then f has a fixed point.



Lacally Hausdorff space

Definition
A topological space X is locally Hausdorff if every point of the
space has an open neighbourhood U such that the topology of X
restricted to U is Hausdorff.

Theorem
If X is a locally Hausdorff T1 topological space and f is a
continuous weak topological contraction on X , then f has a unique
fixed point.



Peripherally Hausdorff space

Definition
For every α ∈ On define a class Fα as follows: for every T1

topological space X , we say that X ∈ Fα is α-Hausdorff space if

if α = 0 then X = {x} and,

if α > 0 then ∀x ∈ X∃β < α [x ] ∈ Fβ where

[x ] =
⋂
{cl(U) : x ∈ U − is open in X}.

We say that X is peripherally Hausdorff iff ∃α ∈ OnX ∈ Fα,
We have
I If β ≤ α then Fβ ⊆ Fα,
I X ∈ F1 iff X is a Hausdorff space.



Definition (Hausdorff rank)
Let X -peripherally Hausdorff space, define Hausdorff rank of X

rankH(X ) = min{α ∈ On : X ∈ Fα}.

Theorem
For every α ∈ On there is X -peripherally Hausdorff space s.t.
α ≤ rankH(X ).

Proposition
If (X , τ(X )) ∈ Fα and Y ⊆ X is nonempty then (Y , τ(Y )) ∈ Fα,
where τ(Y ) = τ(X � Y ) = {U ∩ Y : U ∈ τ(X )}.
Here we used transfinite induction and [x]Y ⊆ [x]X and τ([x]X � [x]Y )) = τ([x]Y ))

where τ([x]X ) = {U ∩ [x]X : U ∈ τ(X )} and τ([x]Y ) = {U ∩ [x]Y : U ∈ τ(Y )}.

Theorem
If X ,Y are peripherally Hausdorff spaces then

rankH(X × Y ) = max{rankH(X ), rankH(Y )}.



Weak+ topological contraction

Definition
Let X - topological space, then f : X → X is weak+ topological
contraction if for each open cover U we have

∀x , y ∈ X ∃U ∈ U ∀∞n ∈ ω f n[{x , y}] ⊆ U

Theorem
For every peripherally Hausdorff space X , every continuous weak+

topological contraction on X has unique fixed-point.



Example

X = {−1} ∪ [0, 1].

Let the base of X consist of all sets of the form:
I J ∩ [0, 1], where J is an open interval, and
I ((L \ {0}) ∩ X ) ∪ {−1}, where L is an open interval

containing 0.

Let f : X → X be defined by

f (x) =
1
2
· x where x ∈ [0, 1] and f (−1) = 0.

Then X is a compact peripherally Hausdorff (in fact 2-Hausdorff)
space and f is a continuous weak+ contraction but f ⊆ X × X is
not closed. Of course, the point 0 is a fixed point of f .
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Weak* topologies

Theorem
Let X be a linear topological space. Let V be a neighbourhood of
the zero vector in X . We define Y as

Y := {x∗ ∈ X ∗ : |x(x∗)| ≤ 1, for each x ∈ U}

Let f : Y → Y be a weak*-continuous mapping satisfying

lim
n
|z(f n(x∗)− f n(y∗))| = 0

for every z ∈ X
Then f has a unique fixed point in Y .

We use the dual notation: x(x∗) := x∗(x) for functionals x∗

which are members of X ∗ and elements x of the space X.



Compact semigroups

Theorem

I G is a Hausdorff compact topological monoid and
I f : G → G is a continuous mapping such that for each

x , y ∈ G and each neighbourhood V of the neutral element
there exist z ∈ G and

I n ∈ N such that f n(x), f n(y) ∈ zV

then f has a unique fixed point.


