A Lelek-like compact metrizable space

Joint ongoing work with R. Camerlo

Gianluca Basso 18 September 2018

Université de Lausanne and Università di Torino

- 1. Approximating compact metrizable \mathcal{L} -structures
- 2. An introduction to projective Fraïssé theory
- 3. A universal space and its characterization
- 4. Open problems

Approximating compact metrizable *L*-structures

In a recent paper¹, the authors proposed the following definition.

¹ Christian Rosendal and Joseph Zielinski (2018). "Compact metrizable structures and classification problems". In: J. Symb. Log.

In a recent paper¹, the authors proposed the following definition. Suppose $\mathcal{L} = (S_i)_{i \in \omega}$ is a a countable relational language, and the arity of S_i is s_i .

¹ Christian Rosendal and Joseph Zielinski (2018). "Compact metrizable structures and classification problems". In: J. Symb. Log.

In a recent paper¹, the authors proposed the following definition.

Suppose $\mathcal{L} = (S_i)_{i \in \omega}$ is a a countable relational language, and the arity of S_i is s_i . A <u>compact metrizable \mathcal{L} -structure</u> is a tuple $(X, (S_i^X)_{i \in \omega})$, where X is a compact metrizable space and $S_i^X \subseteq X^{s_i}$ is closed, for each *i*.

¹ Christian Rosendal and Joseph Zielinski (2018). "Compact metrizable structures and classification problems". In: J. Symb. Log.

Let $(Y, (S_i^Y)_{i \in \omega})$ be a compact metrizable \mathcal{L} -structure. Then there exists a comeagre $H \subseteq Y$ such that:

Let $(Y, (S_i^Y)_{i \in \omega})$ be a compact metrizable \mathcal{L} -structure. Then there exists a comeagre $H \subseteq Y$ such that:

1. $\overline{H^{s_i} \cap S_i^{Y}} = S_i^{Y}$, for each $i \in \omega$,

Let $(Y, (S_i^Y)_{i \in \omega})$ be a compact metrizable \mathcal{L} -structure. Then there exists a comeagre $H \subseteq Y$ such that:

1.
$$\overline{H^{s_i} \cap S_i^{Y}} = S_i^{Y}$$
, for each $i \in \omega$,

2. $\overline{Y \setminus H} = Y'$,

Let $(Y, (S_i^Y)_{i \in \omega})$ be a compact metrizable \mathcal{L} -structure. Then there exists a comeagre $H \subseteq Y$ such that:

- 1. $\overline{H^{s_i} \cap S_i^{Y}} = S_i^{Y}$, for each $i \in \omega$,
- 2. $\overline{Y \setminus H} = Y'$,
- 3. $H = \bigcap_{n \in \omega} \bigcup \mathcal{U}_n$,

where \mathcal{U}_n is a finite collection of pairwise disjoint open subsets of Y and for each n, \mathcal{U}_{n+1} refines \mathcal{U}_n , that is, for each U in \mathcal{U}_{n+1} there is $U' \in \mathcal{U}_n$ such that $U \subseteq U'$.

Let $(Y, (S_i^Y)_{i \in \omega})$ be a compact metrizable \mathcal{L} -structure. Then there exists a comeagre $H \subseteq Y$ such that:

1. $\overline{H^{s_i} \cap S_i^{\gamma}} = S_i^{\gamma}$, for each $i \in \omega$,

2.
$$\overline{Y \setminus H} = Y'$$
,

3.
$$H = \bigcap_{n \in \omega} \bigcup \mathcal{U}_n$$
,

where \mathcal{U}_n is a finite collection of pairwise disjoint open subsets of Y and for each n, \mathcal{U}_{n+1} refines \mathcal{U}_n , that is, for each U in \mathcal{U}_{n+1} there is $U' \in \mathcal{U}_n$ such that $U \subseteq U'$.

Notice that condition 2 implies that the maximum of the diameters of the sets in U_n goes to zero as n grows.

Let *R* be a binary relation symbol and let $\mathcal{L}_R = \mathcal{L} \cup \{R\}$.

Let *R* be a binary relation symbol and let $\mathcal{L}_R = \mathcal{L} \cup \{R\}$. Each \mathcal{U}_n is a finite compact metrizable \mathcal{L}_R -structure by endowing it with the discrete topology and letting

•
$$(U^1, \dots, U^{s_i}) \in S_i^{\mathcal{U}_n}$$
 if and only $(U^1 \times \dots \times U^{s_i}) \cap S_i^Y \neq \emptyset$,

Let *R* be a binary relation symbol and let $\mathcal{L}_R = \mathcal{L} \cup \{R\}$. Each \mathcal{U}_n is a finite compact metrizable \mathcal{L}_R -structure by endowing it with the discrete topology and letting

- $(U^1, \ldots, U^{s_i}) \in S_i^{\mathcal{U}_n}$ if and only $(U^1 \times \cdots \times U^{s_i}) \cap S_i^{Y} \neq \emptyset$,
- $(U, U') \in R^{\mathcal{U}_n}$ if and only if $\overline{U} \cap \overline{U'} \neq \emptyset$.

Define:

$$\mathcal{U}_{\infty} = \left\{ (U_n)_{n \in \omega} \in \prod_{n \in \omega} \mathcal{U}_n \; \middle| \; U_{n+1} \subseteq U_n \right\}$$

Define:

$$\mathcal{U}_{\infty} = \left\{ (U_n)_{n \in \omega} \in \prod_{n \in \omega} \mathcal{U}_n \; \middle| \; U_{n+1} \subseteq U_n \right\}$$

Then \mathcal{U}_{∞} , the projective limit of the \mathcal{U}_n 's, is a closed subset of the product so it a compact metrizable space.

Define:

$$\mathcal{U}_{\infty} = \left\{ (U_n)_{n \in \omega} \in \prod_{n \in \omega} \mathcal{U}_n \; \middle| \; U_{n+1} \subseteq U_n \right\}$$

Then \mathcal{U}_{∞} , the projective limit of the \mathcal{U}_n 's, is a closed subset of the product so it a compact metrizable space.

Then we give \mathcal{U}_{∞} an \mathcal{L}_{R} structure by letting:

• $((U_n^1)_{n \in \omega}, \dots, (U_n^{s_i})_{n \in \omega}) \in S_i^{\mathcal{U}_{\infty}}$ if and only if, for each $n \in \omega$, $(U_n^1, \dots, U_n^{s_i}) \in S_i^{\mathcal{U}_n}$,

Define:

$$\mathcal{U}_{\infty} = \left\{ (U_n)_{n \in \omega} \in \prod_{n \in \omega} \mathcal{U}_n \; \middle| \; U_{n+1} \subseteq U_n \right\}$$

Then \mathcal{U}_{∞} , the projective limit of the \mathcal{U}_n 's, is a closed subset of the product so it a compact metrizable space.

Then we give \mathcal{U}_{∞} an \mathcal{L}_{R} structure by letting:

- $((U_n^1)_{n \in \omega}, \ldots, (U_n^{s_i})_{n \in \omega}) \in S_i^{\mathcal{U}_{\infty}}$ if and only if, for each $n \in \omega$, $(U_n^1, \ldots, U_n^{s_i}) \in S_i^{\mathcal{U}_n}$,
- $((U_n)_{n \in \omega}, (U'_n)_{n \in \omega}) \in R^{\mathcal{U}_{\infty}}$ if and only if, for each $n \in \omega$, $(U_n, U'_n) \in R^{\mathcal{U}_n}$.

So \mathcal{U}_{∞} is a compact metrizable \mathcal{L}_{R} -structure.

Proposition

 $R^{\mathcal{U}_{\infty}}$ is an equivalence relation

Proposition

 $R^{\mathcal{U}_{\infty}}$ is an equivalence relation and

$$(\mathcal{U}_{\infty}/R^{\mathcal{U}_{\infty}},(S_{i}^{\mathcal{U}_{\infty}/R^{\mathcal{U}_{\infty}}})_{i\in\omega})\simeq (Y,(S_{i}^{Y})_{i\in\omega}).$$

Proposition

 $R^{\mathcal{U}_{\infty}}$ is an equivalence relation and

$$(\mathcal{U}_{\infty}/R^{\mathcal{U}_{\infty}},(S_{i}^{\mathcal{U}_{\infty}/R^{\mathcal{U}_{\infty}}})_{i\in\omega})\simeq (Y,(S_{i}^{Y})_{i\in\omega}).$$

Proof. Let $q_Y : \mathcal{U}_{\infty} \to Y$ be $q((U_n)_{n \in \omega}) = \bigcap_{n \in \omega} \overline{U_n}$.

Proposition

 ${\it R}^{{\cal U}_{\infty}}$ is an equivalence relation and

$$(\mathcal{U}_{\infty}/R^{\mathcal{U}_{\infty}},(S_{i}^{\mathcal{U}_{\infty}/R^{\mathcal{U}_{\infty}}})_{i\in\omega})\simeq (Y,(S_{i}^{Y})_{i\in\omega}).$$

Proposition

 ${R}^{\mathcal{U}_{\infty}}$ is an equivalence relation and

$$(\mathcal{U}_{\infty}/R^{\mathcal{U}_{\infty}},(S_{i}^{\mathcal{U}_{\infty}/R^{\mathcal{U}_{\infty}}})_{i\in\omega})\simeq (Y,(S_{i}^{Y})_{i\in\omega}).$$

$$((U_n)_{n\in\omega},(U'_n)_{n\in\omega})\in R^{\mathcal{U}_{\infty}}\iff q_{Y}((U_n)_{n\in\omega})=q_{Y}((U'_n)_{n\in\omega})$$

Proposition

 ${R}^{\mathcal{U}_{\infty}}$ is an equivalence relation and

$$(\mathcal{U}_{\infty}/R^{\mathcal{U}_{\infty}},(S_{i}^{\mathcal{U}_{\infty}/R^{\mathcal{U}_{\infty}}})_{i\in\omega})\simeq(Y,(S_{i}^{Y})_{i\in\omega}).$$

$$((U_n)_{n\in\omega},(U'_n)_{n\in\omega})\in R^{\mathcal{U}_{\infty}}\iff q_Y((U_n)_{n\in\omega})=q_Y((U'_n)_{n\in\omega})$$

$$\forall n, \overline{U}_n \cap \overline{U'_n} \neq \emptyset \qquad \qquad \bigcap_{n \in \omega} \overline{U_n} = \bigcap_{n \in \omega} \overline{U'_n}$$

Proposition

 ${R}^{\mathcal{U}_{\infty}}$ is an equivalence relation and

$$(\mathcal{U}_{\infty}/R^{\mathcal{U}_{\infty}},(S_{i}^{\mathcal{U}_{\infty}/R^{\mathcal{U}_{\infty}}})_{i\in\omega})\simeq(Y,(S_{i}^{Y})_{i\in\omega}).$$

$$((U_n)_{n\in\omega},(U'_n)_{n\in\omega})\in R^{\mathcal{U}_{\infty}}\iff q_Y((U_n)_{n\in\omega})=q_Y((U'_n)_{n\in\omega})$$

$$\forall n, \overline{U}_n \cap \overline{U'_n} \neq \emptyset \iff \bigcap_{n \in \omega} \overline{U_n} = \bigcap_{n \in \omega} \overline{U'_n}$$

Proposition

 ${\it R}^{{\cal U}_{\infty}}$ is an equivalence relation and

$$(\mathcal{U}_{\infty}/R^{\mathcal{U}_{\infty}},(S_{i}^{\mathcal{U}_{\infty}/R^{\mathcal{U}_{\infty}}})_{i\in\omega})\simeq (Y,(S_{i}^{Y})_{i\in\omega}).$$

Proof. Let $q_Y : \mathcal{U}_{\infty} \to Y$ be $q((\mathcal{U}_n)_{n \in \omega}) = \bigcap_{n \in \omega} \overline{\mathcal{U}_n}$. Then q_Y is continuous and surjective, since $H = \bigcap_{n \in \omega} \bigcup \mathcal{U}_n$ is dense in Y.

 $((U_n)_{n\in\omega},(U'_n)_{n\in\omega})\in R^{\mathcal{U}_{\infty}}\iff q_Y((U_n)_{n\in\omega})=q_Y((U'_n)_{n\in\omega})$

 $((U_n^1)_{n \in \omega}, \dots, (U_n^{s_i})_{n \in \omega}) \in S_i^{\mathcal{U}_{\infty}}$ if and only if for each $n \in \omega$, $(U_n^1, \dots, U_n^{s_i}) \in S_i^{\mathcal{U}_n}$

Proposition

 ${\it R}^{{\cal U}_{\infty}}$ is an equivalence relation and

$$(\mathcal{U}_{\infty}/R^{\mathcal{U}_{\infty}},(S_{i}^{\mathcal{U}_{\infty}/R^{\mathcal{U}_{\infty}}})_{i\in\omega})\simeq (Y,(S_{i}^{Y})_{i\in\omega}).$$

Proof. Let $q_Y : \mathcal{U}_{\infty} \to Y$ be $q((\mathcal{U}_n)_{n \in \omega}) = \bigcap_{n \in \omega} \overline{\mathcal{U}_n}$. Then q_Y is continuous and surjective, since $H = \bigcap_{n \in \omega} \bigcup \mathcal{U}_n$ is dense in Y.

$$((U_n)_{n\in\omega},(U'_n)_{n\in\omega})\in R^{\mathcal{U}_{\infty}}\iff q_Y((U_n)_{n\in\omega})=q_Y((U'_n)_{n\in\omega})$$

 $((U_n^1)_{n\in\omega},\ldots,(U_n^{s_i})_{n\in\omega})\in S_i^{\mathcal{U}_{\infty}}$ if and only if for each $n\in\omega$, $(U_n^1,\ldots,U_n^{s_i})\in S_i^{\mathcal{U}_n}$ if and only if $(U_n^1\times\cdots\times U_n^{s_i})\cap S_i^{Y}\neq\emptyset$,

Proposition

 ${\it R}^{{\cal U}_{\infty}}$ is an equivalence relation and

$$(\mathcal{U}_{\infty}/R^{\mathcal{U}_{\infty}},(S_{i}^{\mathcal{U}_{\infty}/R^{\mathcal{U}_{\infty}}})_{i\in\omega})\simeq(Y,(S_{i}^{Y})_{i\in\omega}).$$

Proof. Let $q_Y : \mathcal{U}_{\infty} \to Y$ be $q((\mathcal{U}_n)_{n \in \omega}) = \bigcap_{n \in \omega} \overline{\mathcal{U}_n}$. Then q_Y is continuous and surjective, since $H = \bigcap_{n \in \omega} \bigcup \mathcal{U}_n$ is dense in Y.

$$((U_n)_{n\in\omega},(U'_n)_{n\in\omega})\in R^{\mathcal{U}_{\infty}}\iff q_Y((U_n)_{n\in\omega})=q_Y((U'_n)_{n\in\omega})$$

 $((U_n^1)_{n\in\omega},\ldots,(U_n^{s_i})_{n\in\omega})\in S_i^{\mathcal{U}_{\infty}}$ if and only if for each $n\in\omega$, $(U_n^1,\ldots,U_n^{s_i})\in S_i^{\mathcal{U}_n}$ if and only if $(U_n^1\times\cdots\times U_n^{s_i})\cap S_i^Y\neq\emptyset$, if and only if, since S_i^Y is closed and $\overline{H^{s_i}\cap S_i^Y}=S_i^Y$,

$$\left(\bigcap_{n\in\omega}\overline{U_n^1},\ldots,\bigcap_{n\in\omega}\overline{U_n^s}\right)\in S_i^{\mathsf{Y}}.$$

Proposition

 ${\it R}^{{\cal U}_{\infty}}$ is an equivalence relation and

$$(\mathcal{U}_{\infty}/R^{\mathcal{U}_{\infty}},(S_{i}^{\mathcal{U}_{\infty}/R^{\mathcal{U}_{\infty}}})_{i\in\omega})\simeq (Y,(S_{i}^{Y})_{i\in\omega}).$$

Proof. Let $q_Y : \mathcal{U}_{\infty} \to Y$ be $q((\mathcal{U}_n)_{n \in \omega}) = \bigcap_{n \in \omega} \overline{\mathcal{U}_n}$. Then q_Y is continuous and surjective, since $H = \bigcap_{n \in \omega} \bigcup \mathcal{U}_n$ is dense in Y.

$$((U_n)_{n\in\omega},(U'_n)_{n\in\omega})\in R^{\mathcal{U}_{\infty}}\iff q_Y((U_n)_{n\in\omega})=q_Y((U'_n)_{n\in\omega})$$

 $((U_n^1)_{n\in\omega},\ldots,(U_n^{s_i})_{n\in\omega})\in S_i^{\mathcal{U}_{\infty}}$ if and only if for each $n\in\omega$, $(U_n^1,\ldots,U_n^{s_i})\in S_i^{\mathcal{U}_n}$ if and only if $(U_n^1\times\cdots\times U_n^{s_i})\cap S_i^Y\neq\emptyset$, if and only if, since S_i^Y is closed and $\overline{H^{s_i}\cap S_i^Y}=S_i^Y$,

$$\left(q_Y((U_n^1)_{n\in\omega}),\ldots,q_Y((U_n^{s_i})_{n\in\omega})\right)\in S_i^{\gamma}.$$

Modeling the refinement relation

Definition

Let G, G' be compact metrizable \mathcal{L}_R -structures. An <u>epimorphism</u> $\phi: G' \to G$ is a continuous surjective function such that:

$$(a, a') \in R^G$$
 iff $\phi^{-1}(a) \times \phi^{-1}(a') \cap R^{G'} \neq \emptyset$

Definition

Let G, G' be compact metrizable \mathcal{L}_R -structures. An <u>epimorphism</u> $\phi: G' \to G$ is a continuous surjective function such that:

$$(a_1,\ldots,a_{s_i})\in S_i^G$$
 iff $\phi^{-1}(a_1)\times\cdots\times\phi^{-1}(a_{s_i})\cap S_i^{G'}\neq\emptyset$

Definition

Let G, G' be compact metrizable \mathcal{L}_R -structures. An <u>epimorphism</u> $\phi: G' \to G$ is a continuous surjective function such that:

$$(a_1,\ldots,a_{s_i})\in S_i^G$$
 iff $\phi^{-1}(a_1)\times\cdots\times\phi^{-1}(a_{s_i})\cap S_i^{G'}\neq\emptyset$

So, given a sequence $G_0 \xleftarrow{\phi_0} G_1 \xleftarrow{\phi_1} G_2 \cdots$, we can define the projective limit of (G_n, ϕ_n) as

$$G_{\infty} = \left\{ (a_n)_{n \in \omega} \in \prod_{n \in \omega} G_n \; \middle| \; \forall n, \phi_n(a_{n+1}) = a_n \right\}.$$

When is $R^{G_{\infty}}$ an equivalence relation?

We say that a sequence $G_0 \xleftarrow{\phi_0} G_1 \xleftarrow{\phi_1} G_2 \cdots$ is <u>fine</u>

We say that a sequence $G_0 \xleftarrow{\phi_0} G_1 \xleftarrow{\phi_1} G_2 \cdots$ is <u>fine</u> if R^{G_n} is reflexive and symmetric for each *n* and We say that a sequence $G_0 \xleftarrow{\phi_0} G_1 \xleftarrow{\phi_1} G_2 \cdots$ is fine if R^{G_n} is reflexive and symmetric for each n and for each $n \in \omega$ and each $a, a' \in G_n$, if $d_R(a, a') \ge 2$ then there is $m \ge n$ such that

$$d_R\left(\phi_{m-1}^{-1}\cdots\phi_n^{-1}(a),\phi_{m-1}^{-1}\cdots\phi_n^{-1}(a')\right)\geq 3.$$

We say that a sequence $G_0 \xleftarrow{\phi_0} G_1 \xleftarrow{\phi_1} G_2 \cdots$ is fine if R^{G_n} is reflexive and symmetric for each n and for each $n \in \omega$ and each $a, a' \in G_n$, if $d_R(a, a') \ge 2$ then there is $m \ge n$ such that

$$d_R\left(\phi_{m-1}^{-1}\cdots\phi_n^{-1}(a),\phi_{m-1}^{-1}\cdots\phi_n^{-1}(a')\right)\geq 3.$$

A sequence (G_n, ϕ_n) is fine if and only if $R^{G_{\infty}}$ is an equivalence relation.

We say that a sequence $G_0 \xleftarrow{\phi_0} G_1 \xleftarrow{\phi_1} G_2 \cdots$ is fine if R^{G_n} is reflexive and symmetric for each n and for each $n \in \omega$ and each $a, a' \in G_n$, if $d_R(a, a') \ge 2$ then there is $m \ge n$ such that

$$d_R\left(\phi_{m-1}^{-1}\cdots\phi_n^{-1}(a),\phi_{m-1}^{-1}\cdots\phi_n^{-1}(a')\right)\geq 3.$$

A sequence (G_n, ϕ_n) is fine if and only if $R^{G_{\infty}}$ is an equivalence relation. Say that (G_n, ϕ_n) <u>approximates</u> $G_{\infty}/R^{G_{\infty}}$.

An introduction to projective Fraïssé theory

² Trevor Irwin and Sławomir Solecki (2006). "Projective Fraïssé limits and the pseudo-arc". In: Trans. Amer. Math. Soc.

² Trevor Irwin and Sławomir Solecki (2006). "Projective Fraïssé limits and the pseudo-arc". In: Trans. Amer. Math. Soc.

In some cases one can determine combinatorial properties Γ on the basis of the topological properties of the class C.

² Trevor Irwin and Sławomir Solecki (2006). "Projective Fraïssé limits and the pseudo-arc". In: Trans. Amer. Math. Soc.

In some cases one can determine combinatorial properties Γ on the basis of the topological properties of the class C.

Proposition

A compact metrizable space ($\mathcal{L} = \emptyset$) is connected if and only if it can be approximated by a fine sequence of connected R-graphs.

² Trevor Irwin and Sławomir Solecki (2006). "Projective Fraïssé limits and the pseudo-arc". In: Trans. Amer. Math. Soc.

In some cases one can determine combinatorial properties Γ on the basis of the topological properties of the class C.

Proposition

A compact metrizable space ($\mathcal{L} = \emptyset$) is connected if and only if it can be approximated by a fine sequence of connected R-graphs.

Theorem (Irwin-Solecki, 2006²)

A compact metrizable space ($\mathcal{L} = \emptyset$) is chainable and connected if and only if it can be approximated by a fine sequence of finite connected linear R-graphs.

² Trevor Irwin and Sławomir Solecki (2006). "Projective Fraïssé limits and the pseudo-arc". In: <u>Trans. Amer. Math. Soc.</u>

Let Γ be a class of finite \mathcal{L}_R -structures.

Let Γ be a class of finite \mathcal{L}_R -structures. A sequence $H_0 \xleftarrow{\chi_0}{\leftarrow} H_1 \xleftarrow{\chi_1}{\leftarrow} H_2 \cdots$ in Γ is called <u>universal for Γ </u>

Universal sequences

Let Γ be a class of finite \mathcal{L}_R -structures. A sequence $H_0 \xleftarrow{\chi_0} H_1 \xleftarrow{\chi_1} H_2 \cdots$ in Γ is called <u>universal for Γ </u> if for any other sequence $G_0 \xleftarrow{\phi_0} G_1 \xleftarrow{\phi_1} G_2 \cdots$ from Γ there are an increasing subsequence

$$H_{i_0} \xleftarrow{\hat{\chi}_0} H_{i_1} \xleftarrow{\hat{\chi}_1} H_{i_2} \cdots,$$

where $\hat{\chi}_n = \chi_{i_n} \chi_{i_n+1} \cdots \chi_{i_{n+1}-1}$, and epimorphisms $f_n : H_{i_n} \to G_n$ such that $\phi_n f_{n+1} = f_n \hat{\chi}_n$.

Universal sequences

Let Γ be a class of finite \mathcal{L}_R -structures. A sequence $H_0 \xleftarrow{\chi_0} H_1 \xleftarrow{\chi_1} H_2 \cdots$ in Γ is called <u>universal for Γ </u> if for any other sequence $G_0 \xleftarrow{\phi_0} G_1 \xleftarrow{\phi_1} G_2 \cdots$ from Γ there are an increasing subsequence

$$H_{i_0} \xleftarrow{\hat{\chi}_0} H_{i_1} \xleftarrow{\hat{\chi}_1} H_{i_2} \cdots,$$

where $\hat{\chi}_n = \chi_{i_n}\chi_{i_n+1}\cdots\chi_{i_{n+1}-1}$, and epimorphisms $f_n: H_{i_n} \to G_n$ such that $\phi_n f_{n+1} = f_n \hat{\chi}_n$. If $H_0 \stackrel{\chi_0}{\longrightarrow} H_1 \stackrel{\chi_1}{\longleftarrow} H_2 \cdots$ is a universal fine sequence for Γ it follows that H_∞/R^{H_∞} is projectively universal for all compact metrizable \mathcal{L} -structures approximated by sequences in Γ , since $f_\infty = (f_n)_{n \in \omega}$ induces an epimorphism on the quotients:

$$q^*(f_{\infty}): X = H_{\infty}/R^{H_{\infty}} \to G_{\infty}/R^{G_{\infty}} = Y$$
$$x \mapsto q_Y f_{\infty} q_X^{-1}(x).$$

A class Γ of finite compact metrizable $\mathcal{L}_{\text{R}}\text{-}structures$ such that:

• (JPP) $\forall G, G' \in \Gamma, \exists H \in \Gamma$ and epimorphisms $\phi : H \to G, \phi' : H \to G'$;

A class Γ of finite compact metrizable $\mathcal{L}_{\text{R}}\text{-}structures$ such that:

- (JPP) $\forall G, G' \in \Gamma, \exists H \in \Gamma$ and epimorphisms $\phi : H \to G, \phi' : H \to G'$;
- (AP) $\forall G, G', G'' \in \Gamma$ and epimorphisms $\phi : G \to G'', \phi' : G' \to G'', \exists H \in \Gamma$ and epimorphisms $\psi : H \to G, \psi' : H \to G'$ such that $\phi \psi = \phi' \psi';$

A class Γ of finite compact metrizable $\mathcal{L}_{\text{R}}\text{-}structures$ such that:

- (JPP) $\forall G, G' \in \Gamma, \exists H \in \Gamma$ and epimorphisms $\phi : H \to G, \phi' : H \to G'$;
- (AP) $\forall G, G', G'' \in \Gamma$ and epimorphisms $\phi : G \to G'', \phi' : G' \to G'', \exists H \in \Gamma$ and epimorphisms $\psi : H \to G, \psi' : H \to G'$ such that $\phi \psi = \phi' \psi';$

is called a projective Fraïssé class.

A class Γ of finite compact metrizable $\mathcal{L}_{\text{R}}\text{-}structures$ such that:

- (JPP) $\forall G, G' \in \Gamma, \exists H \in \Gamma$ and epimorphisms $\phi : H \to G, \phi' : H \to G'$;
- (AP) $\forall G, G', G'' \in \Gamma$ and epimorphisms $\phi : G \to G'', \phi' : G' \to G'', \exists H \in \Gamma$ and epimorphisms $\psi : H \to G, \psi' : H \to G'$ such that $\phi \psi = \phi' \psi';$

is called a projective Fraïssé class.

Theorem (Irwin, Solecki, 2006)

If Γ is a projective Fraïssé class then there is a universal sequence $H_0 \xleftarrow{\chi_0} H_1 \xleftarrow{\chi_1} H_2 \cdots$ for Γ .

A class Γ of finite compact metrizable $\mathcal{L}_{\text{R}}\text{-}structures$ such that:

- (JPP) $\forall G, G' \in \Gamma, \exists H \in \Gamma$ and epimorphisms $\phi : H \to G, \phi' : H \to G'$;
- (AP) $\forall G, G', G'' \in \Gamma$ and epimorphisms $\phi : G \to G'', \phi' : G' \to G'', \exists H \in \Gamma$ and epimorphisms $\psi : H \to G, \psi' : H \to G'$ such that $\phi \psi = \phi' \psi';$

is called a projective Fraïssé class.

Theorem (Irwin, Solecki, 2006)

If Γ is a projective Fraïssé class then there is a universal sequence $H_0 \xleftarrow{\chi_0} H_1 \xleftarrow{\chi_1} H_2 \cdots$ for Γ . Moreover (<u>uniqueness</u>) any two universal sequences for Γ have the same projective limit H_∞ (the <u>Fraïssé limit</u> of Γ) up to isomorphism, i.e. injective epimorphism,

A class Γ of finite compact metrizable $\mathcal{L}_{\text{R}}\text{-}structures$ such that:

- (JPP) $\forall G, G' \in \Gamma, \exists H \in \Gamma$ and epimorphisms $\phi : H \to G, \phi' : H \to G'$;
- (AP) $\forall G, G', G'' \in \Gamma$ and epimorphisms $\phi : G \to G'', \phi' : G' \to G'', \exists H \in \Gamma$ and epimorphisms $\psi : H \to G, \psi' : H \to G'$ such that $\phi \psi = \phi' \psi';$

is called a projective Fraïssé class.

Theorem (Irwin, Solecki, 2006)

If Γ is a projective Fraïssé class then there is a universal sequence $H_0 \xleftarrow{\chi_0} H_1 \xleftarrow{\chi_1} H_2 \cdots$ for Γ . Moreover (<u>uniqueness</u>) any two universal sequences for Γ have the same projective limit H_∞ (the <u>Fraïssé limit</u> of Γ) up to isomorphism, i.e. injective epimorphism, and (<u>ultrahomogeneity</u>) given two epimorphisms $\phi, \phi' : H_\infty \to G \in \Gamma$ there exists an isomorphism $\alpha_\infty : H_\infty \to H_\infty$ such that $\phi = \phi' \alpha_\infty$. Let Γ be a Fraïssé class of finite \mathcal{L}_R -structures whose sequences approximate the compact metrizable \mathcal{L} -structures of a class \mathcal{C} , and $H_0 \xleftarrow{\chi_0} H_1 \xleftarrow{\chi_1} H_2 \cdots$ be a fine universal sequence for Γ . Denote $H_{\infty}/R^{H_{\infty}}$ by $X_{\mathcal{C}}$. Let Γ be a Fraïssé class of finite \mathcal{L}_R -structures whose sequences approximate the compact metrizable \mathcal{L} -structures of a class \mathcal{C} , and $H_0 \xleftarrow{\chi_0} H_1 \xleftarrow{\chi_1} H_2 \cdots$ be a fine universal sequence for Γ . Denote $H_{\infty}/R^{H_{\infty}}$ by $X_{\mathcal{C}}$. Then:

• approximate projective homogeneity: let $Y \in C$ and $f, f' : X_C \to Y$ be epimorphisms, then, for any $\epsilon > 0$, there exists an \mathcal{L} -isomorphism $\alpha : X_C \to X_C$ such that for any $x \in X_C$, $d(f(x), f'\alpha(x)) < \epsilon$; Let Γ be a Fraïssé class of finite \mathcal{L}_R -structures whose sequences approximate the compact metrizable \mathcal{L} -structures of a class \mathcal{C} , and $H_0 \xleftarrow{\chi_0} H_1 \xleftarrow{\chi_1} H_2 \cdots$ be a fine universal sequence for Γ . Denote $H_{\infty}/R^{H_{\infty}}$ by $X_{\mathcal{C}}$. Then:

- approximate projective homogeneity: let $Y \in C$ and $f, f' : X_C \to Y$ be epimorphisms, then, for any $\epsilon > 0$, there exists an \mathcal{L} -isomorphism $\alpha : X_C \to X_C$ such that for any $x \in X_C$, $d(f(x), f'\alpha(x)) < \epsilon$;
- any \mathcal{L} -isomorphism $h: X_{\mathcal{C}} \to X_{\mathcal{C}}$ uniformly approximable by $\mathcal{L}_{\mathcal{R}}$ -isomorphisms $\alpha_{\infty}: H_{\infty} \to H_{\infty}$.

Linear graphs and the pseudo-arc

The class **Γ** of all finite connected linear R-graphs is a Fraïssé class.

The class **Γ** of all finite connected linear R-graphs is a Fraïssé class.

Therefore it has a universal sequence $H_0 \xleftarrow{\chi_0} H_1 \xleftarrow{\chi_1} H_2 \cdots$

The class **Γ** of all finite connected linear R-graphs is a Fraïssé class.

Therefore it has a universal sequence $H_0 \xleftarrow{\chi_0} H_1 \xleftarrow{\chi_1} H_2 \cdots$. The universal sequence is fine thus and $H_{\infty}/R^{H_{\infty}}$ is projectively universal and projectively approximately homogeneous for the class of all chainable and connected compact metric spaces.

The class **Γ** of all finite connected linear R-graphs is a Fraïssé class.

Therefore it has a universal sequence $H_0 \stackrel{\chi_0}{\longleftarrow} H_1 \stackrel{\chi_1}{\longleftarrow} H_2 \cdots$. The universal sequence is fine thus and $H_{\infty}/R^{H_{\infty}}$ is projectively universal and projectively approximately homogeneous for the class of all chainable and connected compact metric spaces.

Theorem (Irwin-Solecki, 2006)

 H_∞/R^{H_∞} is homeomorphic to the pseudo-arc.

A universal space and its characterization

Hasse Diagrams of Partial Orders

Let $\mathcal{L} = \{\leq\}$. A compact metrizable \mathcal{L}_R -structure A is a Hasse diagram of a partial order if \leq^A is a partial order and xR^Ax' if and only if x = x' or x is the immediate predecessor or successor of x' wrt \leq^A .

Let $\mathcal{L} = \{\leq\}$. A compact metrizable \mathcal{L}_R -structure A is a Hasse diagram of a partial order if \leq^A is a partial order and xR^Ax' if and only if x = x' or x is the immediate predecessor or successor of x' wrt \leq^A .

Let Π_∇ be the class of all Hasse diagram of finite partial orders which do not contain R-cycles.

Let $\mathcal{L} = \{\leq\}$. A compact metrizable \mathcal{L}_R -structure A is a Hasse diagram of a partial order if \leq^A is a partial order and xR^Ax' if and only if x = x' or x is the immediate predecessor or successor of x' wrt \leq^A .

Let Π_{∇} be the class of all Hasse diagram of finite partial orders which do not contain *R*-cycles.

Theorem (B.- Camerlo)

 $\begin{array}{l} \Pi_{\nabla} \text{ is a projective Fra ss\acute{e} class, whose universal sequence} \\ P_0 \xleftarrow{\chi_0} P_1 \xleftarrow{\chi_1} P_2 \cdots P_{\infty} \text{ is fine.} \end{array}$

A fence is <u>smooth</u> if each arc can be linearly ordered in such a way that the union order is closed.

A fence is <u>smooth</u> if each arc can be linearly ordered in such a way that the union order is closed. Each smooth fence is a compact metrizable $\mathcal{L} = \{\leq\}$ -structure.

A fence is <u>smooth</u> if each arc can be linearly ordered in such a way that the union order is closed. Each smooth fence is a compact metrizable $\mathcal{L} = \{\leq\}$ -structure.

Proposition

A fence is smooth if and only if it can be embedded in the Cantor fence $2^\mathbb{N}\times[0,1],$ preserving the order.

A fence is a compact disjoint union of points and arcs. The Cantor fence is $2^\mathbb{N}\times[0,1].$

A fence is <u>smooth</u> if each arc can be linearly ordered in such a way that the union order is closed. Each smooth fence is a compact metrizable $\mathcal{L} = \{\leq\}$ -structure.

Proposition

A fence is smooth if and only if it can be embedded in the Cantor fence $2^N \times [0,1]$, preserving the order.

Theorem (B.-Camerlo)

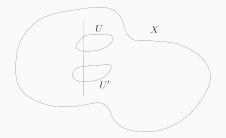
Any smooth fence can be approximated by a fine projective sequence of $\tilde{\Pi}_{\nabla}.$

Theorem (B.- Camerlo)

Let X be a nonempty smooth fence

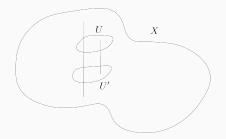
Theorem (B.- Camerlo)

Let X be a nonempty smooth fence such that for any open sets U, U' which both meet a common connected component of X,



Theorem (B.- Camerlo)

Let X be a nonempty smooth fence such that for any open sets U, U' which both meet a common connected component of X, there is an arc of X whose endpoints belong to U, U', respectively.



Theorem (B.- Camerlo)

Let X be a nonempty smooth fence such that for any open sets U, U' which both meet a common connected component of X, there is an arc of X whose endpoints belong to U, U', respectively.

Then X is homeomorphic to $P_{\infty}/R^{P_{\infty}}$.

- Consider a space *X* which satisfies the assumptions of the theorem.
- Find an appropriate fine projective sequence $X_1 \leftarrow X_2 \cdots$ of Π_{∇} which approximates *X*.
- Prove that such a sequence is a universal sequence for $\Pi_\nabla.$
- Conclude that X_{∞} is isomorphic to P_{∞} by uniqueness of the projective Fraïssé limit and thus that their quotients are homeomorphic.

Theorem (B.- Camerlo)

The space $P_{\infty}/R^{P_{\infty}}$ is projectively universal and approximately projectively homogeneous for the class of smooth fences and order preserving continuous surjections.

Theorem (B.- Camerlo)

The space $P_{\infty}/R^{P_{\infty}}$ is projectively universal and approximately projectively homogeneous for the class of smooth fences and order preserving continuous surjections.

Question: What are larger classes of spaces for which the previous theorem holds? Can we characterize the quotients of projective limits of Π_{∇} ?

A <u>fan</u> is a connected, hereditarily unicoherent, uniquely arc-wise connected compact metric space with exactly one branching point,

A fan is a connected, hereditarily unicoherent, uniquely arc-wise connected compact metric space with exactly one branching point, which we denote by t.

A <u>fan</u> is a connected, hereditarily unicoherent, uniquely arc-wise connected compact metric space with exactly one branching point, which we denote by *t*.

If Y is a compact metric space and $u, v \in Y$, denote by [u, v] the intersection of all closed connected subsets of Y containing both u, v.

A \underline{fan} is a connected, hereditarily unicoherent, uniquely arc-wise connected compact metric space with exactly one branching point, which we denote by t.

If Y is a compact metric space and $u, v \in Y$, denote by [u, v] the intersection of all closed connected subsets of Y containing both u, v.

A fan is <u>smooth</u> if the partial order $x \leq y \iff [t, x] \subseteq [t, y]$ is closed. Equivalently if it can be embedded in the Cantor fan $(2^{\mathbb{N}} \times [0, 1])/(x, 0) \sim (x', 0).$

The <u>Lelek fan</u> is the unique smooth fan whose set of endpoints is dense.

A \underline{fan} is a connected, hereditarily unicoherent, uniquely arc-wise connected compact metric space with exactly one branching point, which we denote by t.

If Y is a compact metric space and $u, v \in Y$, denote by [u, v] the intersection of all closed connected subsets of Y containing both u, v.

A fan is <u>smooth</u> if the partial order $x \leq y \iff [t, x] \subseteq [t, y]$ is closed. Equivalently if it can be embedded in the Cantor fan $(2^{\mathbb{N}} \times [0, 1])/(x, 0) \sim (x', 0).$

The <u>Lelek fan</u> is the unique smooth fan whose set of endpoints is dense.

Theorem (Bartošová-Kwiatkowska, 2015)

The class of all finite partial orders with a minimum and which do not contain R-cycles is a projective Fraïssé class with a fine universal sequence the quotient of whose limit is homeomorphic to the Lelek fan.

A fan is a connected, hereditarily unicoherent, uniquely arc-wise connected compact metric space with exactly one branching point.

A fan is a connected, hereditarily unicoherent, uniquely arc-wise connected compact metric space with exactly one branching point.

A <u>fence</u> is a connected, hereditarily unicoherent, <u>component-wise</u> uniquely arc-wise connected compact metric space with <u>no</u> exactly one branching point.

A fan is a connected, hereditarily unicoherent, uniquely arc-wise connected compact metric space with exactly one branching point.

A <u>fence</u> is a connected, hereditarily unicoherent, <u>component-wise</u> uniquely arc-wise connected compact metric space with <u>no</u> exactly one branching point.

A fan is smooth if the partial order $x \leq y \iff [t,x] \subseteq [t,y]$ is closed. Equivalently if it can be embedded in the Cantor fan $(2^{\mathbb{N}} \times [0,1])/(x,0) \sim (x',0).$

A fence is smooth if each arc can be linearly ordered in such a way that the union order is closed. Equivalently if it can be embedded in the Cantor fence $2^{\mathbb{N}} \times [0, 1]$, preserving the order.

A fan is a connected, hereditarily unicoherent, uniquely arc-wise connected compact metric space with exactly one branching point.

A <u>fence</u> is a connected, hereditarily unicoherent, <u>component-wise</u> uniquely arc-wise connected compact metric space with <u>no</u> exactly one branching point.

A fan is smooth if the partial order $x \leq y \iff [t,x] \subseteq [t,y]$ is closed. Equivalently if it can be embedded in the Cantor fan $(2^{\mathbb{N}} \times [0,1])/(x,0) \sim (x',0).$

A fence is smooth if each arc can be linearly ordered in such a way that the union order is closed. Equivalently if it can be embedded in the Cantor fence $2^{\mathbb{N}} \times [0, 1]$, preserving the order.

The Lelek fan is the unique smooth fan whose set of endpoints is dense.

 $P_{\infty}/R^{P_{\infty}}$ is the unique smooth fence ...

Open problems

Theorem (Bartošová-Kwiatkowska, 2017³)

The universal minimal flow of the group of homeomorphisms of the Lelek fan is the space of maximal closed chains of the Lelek fan which are downward closed and connected.

³ Dana Bartošová and Aleksandra Kwiatkowska (2017). "Universal minimal flow of the homeomorphism group of the Lelek fan". In: <u>ArXiv e-prints</u>. arXiv: 1706.09154 [math.LO].

Theorem (Bartošová-Kwiatkowska, 2017³)

The universal minimal flow of the group of homeomorphisms of the Lelek fan is the space of maximal closed chains of the Lelek fan which are downward closed and connected.

Question: What is the universal minimal flow of the group of homeomorphisms of $P_{\infty}/R^{P_{\infty}}$?

³ Dana Bartošová and Aleksandra Kwiatkowska (2017). "Universal minimal flow of the homeomorphism group of the Lelek fan". In: <u>ArXiv e-prints</u>. arXiv: 1706.09154 [math.LO].

References

Bartošová, Dana and Aleksandra Kwiatkowska (2015). "Lelek fan from a projective Fraïssé limit". In: <u>Fund. Math.</u> 231.1, pp. 57–79. URL: https://doi.org/10.4064/fm231-1-4.

- (2017). "Universal minimal flow of the homeomorphism group of the Lelek fan". In: <u>ArXiv e-prints</u>. arXiv: 1706.09154 [math.LO].
- Irwin, Trevor and Sławomir Solecki (2006). "Projective Fraïssé limits and the pseudo-arc". In: <u>Trans. Amer. Math. Soc.</u> 358.7, pp. 3077–3096. URL:

https://doi.org/10.1090/S0002-9947-06-03928-6.

Rosendal, Christian and Joseph Zielinski (2018). "Compact metrizable structures and classification problems". In: J. Symb. Log. 83.1, pp. 165–186. URL: https://doi.org/10.1017/jsl.2017.39.