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Approximating compact
metrizable L-structures



Compact metrizable structures

In a recent paper1, the authors proposed the following definition.

Suppose L = (Si)i∈ω is a a countable relational language, and the
arity of Si is si. A compact metrizable L-structure is a tuple
(X, (SXi )i∈ω), where X is a compact metrizable space and SXi ⊆ Xsi is
closed, for each i.

1 Christian Rosendal and Joseph Zielinski (2018). “Compact metrizable structures
and classification problems”. In: J. Symb. Log.
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Partition Theorem

Theorem (B.)
Let (Y, (SYi )i∈ω) be a compact metrizable L-structure. Then there
exists a comeagre H ⊆ Y such that:

1. Hsi ∩ SYi = SYi , for each i ∈ ω,

2. Y \ H = Y′,
3. H =

∩
n∈ω

∪
Un,

where Un is a finite collection of pairwise disjoint open subsets of Y
and for each n, Un+1 refines Un, that is, for each U in Un+1 there is
U′ ∈ Un such that U ⊆ U′.

Notice that condition 2 implies that the maximum of the diameters
of the sets in Un goes to zero as n grows.
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Un’s as a LR structures

Let R be a binary relation symbol and let LR = L ∪ {R}.

Each Un is a
finite compact metrizable LR-structure by endowing it with the
discrete topology and letting

• (U1, . . . ,Usi) ∈ SUn
i if and only (U1 × · · · × Usi) ∩ SYi ̸= ∅,

• (U,U′) ∈ RUn if and only if U ∩ U′ ̸= ∅.
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Approximate a space with a projective sequence of open covers

Define:

U∞ =

{
(Un)n∈ω ∈

∏
n∈ω

Un

∣∣∣∣∣ Un+1 ⊆ Un

}

Then U∞, the projective limit of the Un’s, is a closed subset of the
product so it a compact metrizable space.

Then we give U∞ an LR structure by letting:

•
(
(U1

n)n∈ω, . . . , (Usi
n )n∈ω

)
∈ SU∞

i if and only if, for each n ∈ ω,(
U1
n, . . . ,U

si
n
)
∈ SUn

i ,
• ((Un)n∈ω, (U′

n)n∈ω) ∈ RU∞ if and only if, for each n ∈ ω,
(Un,U′

n) ∈ RUn .

So U∞ is a compact metrizable LR-structure.
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Retrieving Y from U∞

Proposition
RU∞ is an equivalence relation

and

(U∞/RU∞ , (SU∞/RU∞

i )i∈ω) ≃ (Y, (SYi )i∈ω).

Proof. Let qY : U∞ → Y be q((Un)n∈ω) =
∩

n∈ω Un. Then qY is
continuous and surjective, since H =

∩
n∈ω

∪
Un is dense in Y.

((Un)n∈ω, (U′
n)n∈ω) ∈ RU∞ ⇐⇒ qY ((Un)n∈ω) = qY ((U′

n)n∈ω)
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Modeling the refinement relation

Definition
Let G,G′ be compact metrizable LR-structures. An epimorphism
ϕ : G′ → G is a continuous surjective function such that:

So, given a sequence G0
ϕ0←− G1

ϕ1←− G2 · · · , we can define the
projective limit of (Gn, ϕn) as

G∞ =

{
(an)n∈ω ∈

∏
n∈ω

Gn

∣∣∣∣∣ ∀n, ϕn(an+1) = an

}
.
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When is RG∞ an equivalence relation?

We say that a sequence G0
ϕ0←− G1

ϕ1←− G2 · · · is fine if RGn is reflexive
and symmetric for each n and for each n ∈ ω and each a,a′ ∈ Gn, if
dR(a,a′) ≥ 2 then there is m ≥ n such that

dR
(
ϕ−1
m−1 · · ·ϕ

−1
n (a), ϕ−1

m−1 · · ·ϕ
−1
n (a′)

)
≥ 3.

A sequence (Gn, ϕn) is fine if and only if RG∞ is an equivalence
relation. Say that (Gn, ϕn) approximates G∞/RG∞ .
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An introduction to projective
Fraïssé theory



Topological→ combinatorial

Given a class C of compact metrizable L-structures we can look at a
class Γ of finite LR-structures such that each Y ∈ C is approximated
by a fine sequence of Γ.

In some cases one can determine combinatorial properties Γ on the
basis of the topological properties of the class C.

Proposition
A compact metrizable space (L = ∅) is connected if and only if it can
be approximated by a fine sequence of connected R-graphs.

Theorem (Irwin-Solecki, 20062)
A compact metrizable space (L = ∅) is chainable and connected if
and only if it can be approximated by a fine sequence of finite
connected linear R-graphs.

2 Trevor Irwin and Sławomir Solecki (2006). “Projective Fraïssé limits and the
pseudo-arc”. In: Trans. Amer. Math. Soc.
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Universal sequences

Let Γ be a class of finite LR-structures.

A sequence H0
χ0←− H1

χ1←− H2 · · · in Γ is called universal for Γ if for
any other sequence G0

ϕ0←− G1
ϕ1←− G2 · · · from Γ there are an

increasing subsequence

Hi0
χ̂0←− Hi1

χ̂1←− Hi2 · · · ,

where χ̂n = χinχin+1 · · ·χin+1−1, and epimorphisms fn : Hin → Gn such
that ϕnfn+1 = fnχ̂n.
If H0

χ0←− H1
χ1←− H2 · · · is a universal fine sequence for Γ it follows

that H∞/RH∞ is projectively universal for all compact metrizable
L-structures approximated by sequences in Γ, since f∞ = (fn)n∈ω

induces an epimorphism on the quotients:

q∗(f∞) : X = H∞/RH∞ → G∞/RG∞ = Y
x 7→ qYf∞q−1

X (x).

10



Universal sequences

Let Γ be a class of finite LR-structures.
A sequence H0

χ0←− H1
χ1←− H2 · · · in Γ is called universal for Γ

if for
any other sequence G0

ϕ0←− G1
ϕ1←− G2 · · · from Γ there are an

increasing subsequence

Hi0
χ̂0←− Hi1

χ̂1←− Hi2 · · · ,

where χ̂n = χinχin+1 · · ·χin+1−1, and epimorphisms fn : Hin → Gn such
that ϕnfn+1 = fnχ̂n.
If H0

χ0←− H1
χ1←− H2 · · · is a universal fine sequence for Γ it follows

that H∞/RH∞ is projectively universal for all compact metrizable
L-structures approximated by sequences in Γ, since f∞ = (fn)n∈ω

induces an epimorphism on the quotients:

q∗(f∞) : X = H∞/RH∞ → G∞/RG∞ = Y
x 7→ qYf∞q−1

X (x).

10



Universal sequences

Let Γ be a class of finite LR-structures.
A sequence H0

χ0←− H1
χ1←− H2 · · · in Γ is called universal for Γ if for

any other sequence G0
ϕ0←− G1

ϕ1←− G2 · · · from Γ there are an
increasing subsequence

Hi0
χ̂0←− Hi1

χ̂1←− Hi2 · · · ,

where χ̂n = χinχin+1 · · ·χin+1−1, and epimorphisms fn : Hin → Gn such
that ϕnfn+1 = fnχ̂n.

Hi0

f0
��

Hi1
χ̂0oo

f1
��

Hi2
χ̂1oo

f2
��

· · ·

G0 G1
ϕ0

oo G2
ϕ1

oo · · ·

If H0
χ0←− H1

χ1←− H2 · · · is a universal fine sequence for Γ it follows
that H∞/RH∞ is projectively universal for all compact metrizable
L-structures approximated by sequences in Γ, since f∞ = (fn)n∈ω

induces an epimorphism on the quotients:

q∗(f∞) : X = H∞/RH∞ → G∞/RG∞ = Y
x 7→ qYf∞q−1

X (x).

10



Universal sequences

Let Γ be a class of finite LR-structures.
A sequence H0

χ0←− H1
χ1←− H2 · · · in Γ is called universal for Γ if for

any other sequence G0
ϕ0←− G1

ϕ1←− G2 · · · from Γ there are an
increasing subsequence

Hi0
χ̂0←− Hi1

χ̂1←− Hi2 · · · ,

where χ̂n = χinχin+1 · · ·χin+1−1, and epimorphisms fn : Hin → Gn such
that ϕnfn+1 = fnχ̂n.
If H0

χ0←− H1
χ1←− H2 · · · is a universal fine sequence for Γ it follows

that H∞/RH∞ is projectively universal for all compact metrizable
L-structures approximated by sequences in Γ, since f∞ = (fn)n∈ω

induces an epimorphism on the quotients:

q∗(f∞) : X = H∞/RH∞ → G∞/RG∞ = Y
x 7→ qYf∞q−1

X (x).
10



Fraïssé Theory

A class Γ of finite compact metrizable LR-structures such that:

• (JPP) ∀G,G′ ∈ Γ,∃H ∈ Γ and epimorphisms ϕ : H→ G, ϕ′ : H→ G′;

• (AP) ∀G,G′,G′′ ∈ Γ and epimorphisms ϕ : G→ G′′, ϕ′ : G′ → G′′,
∃H ∈ Γ and epimorphisms ψ : H→ G, ψ′ : H→ G′ such that
ϕψ = ϕ′ψ′;

is called a projective Fraïssé class.

Theorem (Irwin, Solecki, 2006)
If Γ is a projective Fraïssé class then there is a universal sequence
H0

χ0←− H1
χ1←− H2 · · · for Γ. Moreover (uniqueness) any two universal

sequences for Γ have the same projective limit H∞ (the Fraïssé limit
of Γ) up to isomorphism, i.e. injective epimorphism, and
(ultrahomogeneity) given two epimorphisms ϕ, ϕ′ : H∞ → G ∈ Γ there
exists an isomorphism α∞ : H∞ → H∞ such that ϕ = ϕ′α∞.
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Some consequences

Let Γ be a Fraïssé class of finite LR-structures whose sequences
approximate the compact metrizable L-structures of a class C, and
H0

χ0←− H1
χ1←− H2 · · · be a fine universal sequence for Γ. Denote

H∞/RH∞ by XC .

Then:

• approximate projective homogeneity: let Y ∈ C and f, f′ : XC → Y
be epimorphisms, then, for any ϵ > 0, there exists an
L-isomorphism α : XC → XC such that for any x ∈ XC ,
d(f(x), f′α(x)) < ϵ;

• any L-isomorphism h : XC →: XC uniformly approximable by
LR-isomorphisms α∞ : H∞ → H∞.

12



Some consequences

Let Γ be a Fraïssé class of finite LR-structures whose sequences
approximate the compact metrizable L-structures of a class C, and
H0

χ0←− H1
χ1←− H2 · · · be a fine universal sequence for Γ. Denote

H∞/RH∞ by XC . Then:

• approximate projective homogeneity: let Y ∈ C and f, f′ : XC → Y
be epimorphisms, then, for any ϵ > 0, there exists an
L-isomorphism α : XC → XC such that for any x ∈ XC ,
d(f(x), f′α(x)) < ϵ;

• any L-isomorphism h : XC →: XC uniformly approximable by
LR-isomorphisms α∞ : H∞ → H∞.

12



Some consequences

Let Γ be a Fraïssé class of finite LR-structures whose sequences
approximate the compact metrizable L-structures of a class C, and
H0

χ0←− H1
χ1←− H2 · · · be a fine universal sequence for Γ. Denote

H∞/RH∞ by XC . Then:

• approximate projective homogeneity: let Y ∈ C and f, f′ : XC → Y
be epimorphisms, then, for any ϵ > 0, there exists an
L-isomorphism α : XC → XC such that for any x ∈ XC ,
d(f(x), f′α(x)) < ϵ;

• any L-isomorphism h : XC →: XC uniformly approximable by
LR-isomorphisms α∞ : H∞ → H∞.

12



Linear graphs and the pseudo-arc

Theorem (Irwin-Solecki, 2006)
The class Γ of all finite connected linear R-graphs is a Fraïssé class.

Therefore it has a universal sequence H0
χ0←− H1

χ1←− H2 · · · . The
universal sequence is fine thus and H∞/RH∞ is projectively universal
and projectively approximately homogeneous for the class of all
chainable and connected compact metric spaces.

Theorem (Irwin-Solecki, 2006)
H∞/RH∞ is homeomorphic to the pseudo-arc.
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A universal space and its
characterization



Hasse Diagrams of Partial Orders

Let L = {≤}. A compact metrizable LR-structure A is a Hasse
diagram of a partial order if ≤A is a partial order and xRAx′ if and only
if x = x′ or x is the immediate predecessor or successor of x′ wrt ≤A.

Let Π∇ be the class of all Hasse diagram of finite partial orders which
do not contain R-cycles.

Theorem (B.- Camerlo)
Π∇ is a projective Fraïssé class, whose universal sequence
P0

χ0←− P1
χ1←− P2 · · ·P∞ is fine.
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Smooth fences

A fence is a compact disjoint union of points and arcs. The Cantor
fence is 2N × [0, 1].

A fence is smooth if each arc can be linearly ordered in such a way
that the union order is closed. Each smooth fence is a compact
metrizable L = {≤}-structure.

Proposition
A fence is smooth if and only if it can be embedded in the Cantor
fence 2N × [0, 1], preserving the order.

Theorem (B.-Camerlo)
Any smooth fence can be approximated by a fine projective sequence
of Π̃∇.

15
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Characterization theorem

An endpoint of a compact metric space Y is a point x such that, for
any embedding h : [0, 1]→ Y such that x ∈ ran(h), x = h(0) or
x = h(1).

Theorem (B.- Camerlo)
Let X be a nonempty smooth fence such that for any open sets U,U′

which both meet a common connected component of X,

there is an
arc of X whose endpoints belong to U,U′, respectively.
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Then X is homeomorphic to P∞/RP∞ .
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Outline of the proof of the characterization

• Consider a space X which satisfies the assumptions of the
theorem.

• Find an appropriate fine projective sequence X1 ← X2 · · · of Π∇

which approximates X.
• Prove that such a sequence is a universal sequence for Π∇.
• Conclude that X∞ is isomorphic to P∞ by uniqueness of the
projective Fraïssé limit and thus that their quotients are
homeomorphic.

17



Approximate projective homogeneity

Theorem (B.- Camerlo)
The space P∞/RP∞ is projectively universal and approximately
projectively homogeneous for the class of smooth fences and order
preserving continuous surjections.

Question: What are larger classes of spaces for which the previous
theorem holds? Can we characterize the quotients of projective
limits of Π∇?

18
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Lelek fan

A fan is a connected, hereditarily unicoherent, uniquely arc-wise
connected compact metric space with exactly one branching point,

which we denote by t.

If Y is a compact metric space and u, v ∈ Y, denote by [u, v] the
intersection of all closed connected subsets of Y containing both u, v.

A fan is smooth if the partial order x ⪯ y ⇐⇒ [t, x] ⊆ [t, y] is closed.
Equivalently if it can be embedded in the Cantor fan
(2N × [0, 1])/(x, 0) ∼ (x′, 0).

The Lelek fan is the unique smooth fan whose set of endpoints is
dense.

Theorem (Bartošová-Kwiatkowska, 2015)
The class of all finite partial orders with a minimum and which do
not contain R-cycles is a projective Fraïssé class with a fine universal
sequence the quotient of whose limit is homeomorphic to the Lelek
fan.

19
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intersection of all closed connected subsets of Y containing both u, v.

A fan is smooth if the partial order x ⪯ y ⇐⇒ [t, x] ⊆ [t, y] is closed.
Equivalently if it can be embedded in the Cantor fan
(2N × [0, 1])/(x, 0) ∼ (x′, 0).

The Lelek fan is the unique smooth fan whose set of endpoints is
dense.
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Fans and fences

A fan is a connected, hereditarily unicoherent, uniquely arc-wise
connected compact metric space with exactly one branching point.

A fence is a connected, hereditarily unicoherent, component-wise
uniquely arc-wise connected compact metric space with no exactly
one branching point.

A fan is smooth if the partial order x ⪯ y ⇐⇒ [t, x] ⊆ [t, y] is closed.
Equivalently if it can be embedded in the Cantor fan
(2N × [0, 1])/(x, 0) ∼ (x′, 0).

A fence is smooth if each arc can be linearly ordered in such a way
that the union order is closed. Equivalently if it can be embedded in
the Cantor fence 2N × [0, 1], preserving the order.

The Lelek fan is the unique smooth fan whose set of endpoints is
dense.

P∞/RP∞ is the unique smooth fence ...
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Open problems

Theorem (Bartošová-Kwiatkowska, 20173)
The universal minimal flow of the group of homeomorphisms of the
Lelek fan is the space of maximal closed chains of the Lelek fan
which are downward closed and connected.

Question: What is the universal minimal flow of the group of
homeomorphisms of P∞/RP∞?

3 Dana Bartošová and Aleksandra Kwiatkowska (2017). “Universal minimal flow of
the homeomorphism group of the Lelek fan”. In: ArXiv e-prints. arXiv: 1706.09154
[math.LO].
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