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Spli�ing Chains

For A, S ⊂ ω we say that S splits A if both A ∩ S and A \ S are infinite.
Otherwise A reaps S.

S ⊂ P (ω) is spli�ing if for each infinite A ⊂ ω there exists S ∈ S
such that S splits A.

S ⊂ P (ω) is a chain in P (ω) if it is linearly ordered by ⊂∗
(the modulo finite inclusion).

S is a spli�ing chain if it is a spli�ing chain.

�estion
Do spli�ing chains exist?

Answer: Sometimes, e.g. under CH.
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Exact sequences of Banach spaces

Definition
An exact sequence of Banach spaces is a diagram

0 −−−−→ Y ı−−−−→ Z π−−−−→ X −−−−→ 0

of Banach spaces and linear continuous operators such that the
kernel of each arrow agrees with the range of the preceding one.
The exact sequence is trivial if there is an operator $ : Z → Y such
that $ ◦ ı = idY .

False, counterexamples are constructed using spli�ing chains.
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Exact sequences of Banach spaces

Definition
An exact sequence of Banach spaces is a diagram

0 −−−−→ Y ı−−−−→ Z π−−−−→ X −−−−→ 0

of Banach spaces and linear continuous operators such that the
kernel of each arrow agrees with the range of the preceding one.
The exact sequence is trivial if there is an operator $ : Z → Y such
that $ ◦ ı = idY .

Theorem
If there is a spli�ing chain of size κ, then there is a nontrivial exact
sequence

0 −−−−→ `∞/c0
ı−−−−→ Z π−−−−→ c0(κ) −−−−→ 0.



Tunnels in topological spaces
Let U,V be open subsets of a topological space X .
We write U < V when U ⊆ V .
A family of open subsets of X is a chain if it is linearly ordered by <.

Definition (Nyikos)
Chain U of open subsets of a topological space X is a tunnel in X if
the set

⋃{
U \ U : U ∈ U

}
is dense in X .

If there is an isolated point in X , then there is no tunnel in X .

Theorem (Marciszewski)
If X is metrizable without isolated points, then there is a tunnel in X.

Theorem
Stone spaces of Aronszajn algebras do not have tunnels.

Theorem
The Suslin hypothesis is equivalent to the assertion that every c.c.c.
compact zero-dimensional space without isolated points has a tunnel.
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Tunnels and chains in topological spaces

For A, S open subsets of a topological space we say that S splits A if
both A ∩ S and A \ S are non-empty.

A family A of open subsets of a topological space X is spli�ing if for
each open A ⊂ X there exists S ∈ A such that S splits A.

Proposition
If U is a tunnel in X, then U is a spli�ing chain in X.

Theorem
Let K be a compact space. The following are equivalent:

1. K has a tunnel,

2. K has a spli�ing chain of open sets,

3. there is a continuous mapping f : K → L into a linearly ordered
space L, and with nowhere dense fibers. I.e. f −1[{ l }] is nowhere
dense for each l ∈ L.
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Pre-gaps in P (ω)

We say that (L,R) is a (linear) pre-gap if L,R ⊂ P (ω), for each
L ∈ L,R ∈ R is L ⊂∗ R, and L,R are linearly ordered by ⊂∗.

S ⊂ ω separates a pre-gap (L,R) if L ⊂∗ S ⊂∗ R for each
L ∈ L,R ∈ R.

S ⊂ ω spreads a pre-gap (L,R) if L ∩ S =∗ ∅ and S ⊂∗ R for each
L ∈ L,R ∈ R.

A pre-gap is a gap if there is no S separating it.

A pre-gap is tight if there is no S spreading it.

Observation
If A,B separate a tight pre-gap, then A =∗ B.
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Let S be a chain in P (ω). We say that a pre-gap (L,R) is a cut in S if
S = L ∪R.

Proposition
Chain S in P (ω) is spli�ing i� every cut in S is a tight pre-gap.

Pre-gap (L,R) has type (κ, λ) if the (upwards) cofinality of L is κ
and the (downwards) cofinality ofR is λ.

There are no (≤ ω,≤ ω) gaps or tight pre-gaps.

Observation
There is a spli�ing chain in P (ω) under CH.

Observation
If S is a spli�ing chain, then the rational numbers Q are embedded in
S (as a linear order).

Corollary
If S is a spli�ing chain, then |S| = c.
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Observation
If S is a spli�ing chain, then the rational numbers Q are embedded in
S (as a linear order).

Corollary
Let V ⊂ W be models of ZFC, such that there is a real number in
W \ V . If S ∈ V , then S is not a spli�ing chain in W .

An (ω1, ω1) gap exists in ZFC.
PFA implies that every gap of type (ω1, ?) has type (ω1, ω1).

Theorem
A tight (ω1, ω1) pre-gap exists i� p = ω1.

Corollary
PFA implies that there are no spli�ing chains in P (ω).
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Let Cκ be the poset for adding κ-many Cohen reals.

Theorem
Assume CH and let κ be of uncountable cofinality. Then Cκ forces that
there is spli�ing chain.

Theorem
Let κ be a regular uncountable cardinal. It is consistent that c = κ,
MA(σ-centered), and a spli�ing chain exists.

Let G = (L,R) be a pre-gap. The separating forcing PG consists of
conditions p = (sp, Lp,Rp) such that sp ∈ 2<ω , Lp ∈ [L]<ω ,
Rp ∈ [R]<ω , and L \

∣∣sp
∣∣ ⊂ R for each L ∈ Lp, R ∈ Rp.

q < p if sp ⊂ sq, Lp ⊂ Lq, Rp ⊂ Rq, and L ∩ [
∣∣sp
∣∣, ∣∣sq

∣∣) ⊆ sq and
sq ∩ [

∣∣sp
∣∣, ∣∣sq

∣∣) ⊆ R for each L ∈ Lp and r ∈ Rp.

Theorem
If the type of G is not (ω1, ω1), then PG is c.c.c.

If the type of G is (≤ ω,≤ ω) then PG is the Cohen forcing.
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If the type of G is not (ω1, ω1), then PG is c.c.c.
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Let G be a PG generic filter. The set S =
⋃
{ sp : p ∈ G } separates G.

Proposition
If A ∈ V spreads G, then S splits A.

Proposition
Let G be a tight gap. Adding any number of Cohen reals does not add a
subset spreading G.


