Set-Theoretic Methods in Topology and Real Functions Theory dedicated to 80th birthday of Lev Bukovský September 9th–13th 2019, Košice, Slovakia

▲□▶▲□▶▲□▶▲□▶ □ のQで

Invited speakers

- Aleksander Błaszczyk
- Vera Fischer
- István Juhász
- Menachem Magidor
- Dilip Raghavan

Winter School 2019

January 26th-February 2nd 2019 Hejnice, Czech Republic

Invited speakers

- James Cummings
- Miroslav Hušek
- Wiesław Kubiś
- Jordi Lopez-Abad

www.winterschool.eu

Logic Colloquium 2019

August 11th-16th 2019, Prague, Czech Republic

www.lc2019.cz

▲□▶▲□▶▲□▶▲□▶ □ のQで

Program Committee

- Andrew Arana
- Lev Beklemishev (chair)
- Agata Ciabattoni
- Russell Miller
- Martin Otto
- Pavel Pudlák
- Stevo Todorčević
- Alex Wilkie

David Chodounský

Institute of Mathematics CAS

joint work of Félix Cabello, Antonio Avilés, Piotr Borodulin-Nadzieja, David Chodounský, and Osvaldo Guzmán

For $A, S \subset \omega$ we say that *S* splits *A* if both $A \cap S$ and $A \setminus S$ are infinite. Otherwise *A* reaps *S*.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $S \subset \mathcal{P}(\omega)$ is *splitting* if for each infinite $A \subset \omega$ there exists $S \in S$ such that S splits A.

 $S \subset \mathcal{P}(\omega)$ is a *chain* in $\mathcal{P}(\omega)$ if it is linearly ordered by \subset^* (the modulo finite inclusion).

 ${\mathcal S}$ is a *splitting chain* if it is a splitting chain.

For $A, S \subset \omega$ we say that *S* splits *A* if both $A \cap S$ and $A \setminus S$ are infinite. Otherwise *A* reaps *S*.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $S \subset \mathcal{P}(\omega)$ is *splitting* if for each infinite $A \subset \omega$ there exists $S \in S$ such that S splits A.

 $S \subset \mathcal{P}(\omega)$ is a *chain* in $\mathcal{P}(\omega)$ if it is linearly ordered by \subset^* (the modulo finite inclusion).

 ${\mathcal S}$ is a *splitting chain* if it is a splitting chain.

Question Do splitting chains exist?

For $A, S \subset \omega$ we say that *S* splits *A* if both $A \cap S$ and $A \setminus S$ are infinite. Otherwise *A* reaps *S*.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $S \subset \mathcal{P}(\omega)$ is *splitting* if for each infinite $A \subset \omega$ there exists $S \in S$ such that S splits A.

 $S \subset \mathcal{P}(\omega)$ is a *chain* in $\mathcal{P}(\omega)$ if it is linearly ordered by \subset^* (the modulo finite inclusion).

 ${\mathcal S}$ is a *splitting chain* if it is a splitting chain.

Question Do splitting chains exist?

Answer: Sometimes

For $A, S \subset \omega$ we say that *S* splits *A* if both $A \cap S$ and $A \setminus S$ are infinite. Otherwise *A* reaps *S*.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $S \subset \mathcal{P}(\omega)$ is *splitting* if for each infinite $A \subset \omega$ there exists $S \in S$ such that S splits A.

 $S \subset \mathcal{P}(\omega)$ is a *chain* in $\mathcal{P}(\omega)$ if it is linearly ordered by \subset^* (the modulo finite inclusion).

 ${\mathcal S}$ is a *splitting chain* if it is a splitting chain.

Question

Do splitting chains exist?

Answer: Sometimes, e.g. under CH.

Definition

An exact sequence of Banach spaces is a diagram

$$0 \longrightarrow Y \xrightarrow{\imath} Z \xrightarrow{\pi} X \longrightarrow 0$$

of Banach spaces and linear continuous operators such that the kernel of each arrow agrees with the range of the preceding one. The exact sequence is *trivial* if there is an operator $\varpi \colon Z \to Y$ such that $\varpi \circ i = id_Y$.

Definition

An exact sequence of Banach spaces is a diagram

 $0 \longrightarrow Y \xrightarrow{\imath} Z \xrightarrow{\pi} X \longrightarrow 0$

of Banach spaces and linear continuous operators such that the kernel of each arrow agrees with the range of the preceding one. The exact sequence is *trivial* if there is an operator $\varpi \colon Z \to Y$ such that $\varpi \circ i = id_Y$.

Theorem

Every exact sequence of the form

$$0 \longrightarrow \ell_{\infty}/c_0 \xrightarrow{i} Z \xrightarrow{\pi} \ell_{\infty}/c_0 \longrightarrow 0$$

is trivial.

Definition

An exact sequence of Banach spaces is a diagram

 $0 \longrightarrow Y \xrightarrow{\imath} Z \xrightarrow{\pi} X \longrightarrow 0$

of Banach spaces and linear continuous operators such that the kernel of each arrow agrees with the range of the preceding one. The exact sequence is *trivial* if there is an operator $\varpi \colon Z \to Y$ such that $\varpi \circ i = id_Y$.

Theorem

Every exact sequence of the form

$$0 \longrightarrow \ell_{\infty}/c_0 \xrightarrow{i} Z \xrightarrow{\pi} \ell_{\infty}/c_0 \longrightarrow 0$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is trivial.

False, counterexamples are constructed using splitting chains.

Definition

An exact sequence of Banach spaces is a diagram

$$0 \longrightarrow Y \xrightarrow{\imath} Z \xrightarrow{\pi} X \longrightarrow 0$$

of Banach spaces and linear continuous operators such that the kernel of each arrow agrees with the range of the preceding one. The exact sequence is *trivial* if there is an operator $\varpi \colon Z \to Y$ such that $\varpi \circ i = id_Y$.

Theorem

If there is a splitting chain of size κ , then there is a nontrivial exact sequence

$$0 \longrightarrow \ell_{\infty}/c_{0} \xrightarrow{\imath} Z \xrightarrow{\pi} c_{0}(\kappa) \longrightarrow 0.$$

Let U, V be open subsets of a topological space X.

We write U < V when $\overline{U} \subseteq V$.

A family of open subsets of X is a *chain* if it is linearly ordered by <.

Definition (Nyikos)

Chain \mathcal{U} of open subsets of a topological space X is a *tunnel* in X if the set $\bigcup \{ \overline{U} \setminus U : U \in \mathcal{U} \}$ is dense in X.

Let U, V be open subsets of a topological space X.

We write U < V when $\overline{U} \subseteq V$.

A family of open subsets of X is a *chain* if it is linearly ordered by <.

Definition (Nyikos)

Chain \mathcal{U} of open subsets of a topological space X is a *tunnel* in X if the set $\bigcup \{ \overline{U} \setminus U : U \in \mathcal{U} \}$ is dense in X.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If there is an isolated point in *X*, then there is no tunnel in *X*.

Let U, V be open subsets of a topological space X.

We write U < V when $\overline{U} \subseteq V$.

A family of open subsets of X is a *chain* if it is linearly ordered by <.

Definition (Nyikos)

Chain \mathcal{U} of open subsets of a topological space X is a *tunnel* in X if the set $\bigcup \{ \overline{U} \setminus U : U \in \mathcal{U} \}$ is dense in X.

If there is an isolated point in *X*, then there is no tunnel in *X*.

Theorem (Marciszewski)

If X is metrizable without isolated points, then there is a tunnel in X.

Let U, V be open subsets of a topological space X.

We write U < V when $\overline{U} \subseteq V$.

A family of open subsets of X is a *chain* if it is linearly ordered by <.

Definition (Nyikos)

Chain \mathcal{U} of open subsets of a topological space X is a *tunnel* in X if the set $\bigcup \{ \overline{U} \setminus U : U \in \mathcal{U} \}$ is dense in X.

If there is an isolated point in X, then there is no tunnel in X.

Theorem (Marciszewski)

If X is metrizable without isolated points, then there is a tunnel in X.

Theorem

Stone spaces of Aronszajn algebras do not have tunnels.

Theorem

The Suslin hypothesis is equivalent to the assertion that every c.c.c. compact zero-dimensional space without isolated points has a tunnel.

Tunnels and chains in topological spaces

For *A*, *S* open subsets of a topological space we say that *S* splits *A* if both $A \cap S$ and $A \setminus S$ are non-empty.

A family \mathcal{A} of open subsets of a topological space X is *splitting* if for each open $A \subset X$ there exists $S \in \mathcal{A}$ such that S splits A.

Tunnels and chains in topological spaces

For *A*, *S* open subsets of a topological space we say that *S* splits *A* if both $A \cap S$ and $A \setminus S$ are non-empty.

A family \mathcal{A} of open subsets of a topological space X is *splitting* if for each open $A \subset X$ there exists $S \in \mathcal{A}$ such that S splits A.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

If \mathcal{U} is a tunnel in X, then \mathcal{U} is a splitting chain in X.

Tunnels and chains in topological spaces

For *A*, *S* open subsets of a topological space we say that *S* splits *A* if both $A \cap S$ and $A \setminus S$ are non-empty.

A family \mathcal{A} of open subsets of a topological space X is *splitting* if for each open $A \subset X$ there exists $S \in \mathcal{A}$ such that S splits A.

Proposition

If \mathcal{U} is a tunnel in X, then \mathcal{U} is a splitting chain in X.

Theorem

Let K be a compact space. The following are equivalent:

- 1. K has a tunnel,
- 2. K has a splitting chain of open sets,
- there is a continuous mapping f: K → L into a linearly ordered space L, and with nowhere dense fibers. I.e. f⁻¹[{ l}] is nowhere dense for each l ∈ L.

Pre-gaps in $\mathcal{P}(\omega)$

We say that $(\mathcal{L}, \mathcal{R})$ is a *(linear) pre-gap* if $\mathcal{L}, \mathcal{R} \subset \mathcal{P}(\omega)$, for each $L \in \mathcal{L}, R \in \mathcal{R}$ is $L \subset^* R$, and \mathcal{L}, \mathcal{R} are linearly ordered by \subset^* .

 $S \subset \omega$ separates a pre-gap $(\mathcal{L}, \mathcal{R})$ if $L \subset^* S \subset^* R$ for each $L \in \mathcal{L}, R \in \mathcal{R}$.

 $S \subset \omega$ spreads a pre-gap $(\mathcal{L}, \mathcal{R})$ if $L \cap S =^* \emptyset$ and $S \subset^* R$ for each $L \in \mathcal{L}, R \in \mathcal{R}$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

A pre-gap is a *gap* if there is no *S* separating it.

A pre-gap is *tight* if there is no *S* spreading it.

Pre-gaps in $\mathcal{P}(\omega)$

We say that $(\mathcal{L}, \mathcal{R})$ is a *(linear) pre-gap* if $\mathcal{L}, \mathcal{R} \subset \mathcal{P}(\omega)$, for each $L \in \mathcal{L}, R \in \mathcal{R}$ is $L \subset^* R$, and \mathcal{L}, \mathcal{R} are linearly ordered by \subset^* .

 $S \subset \omega$ separates a pre-gap $(\mathcal{L}, \mathcal{R})$ if $L \subset^* S \subset^* R$ for each $L \in \mathcal{L}, R \in \mathcal{R}$.

 $S \subset \omega$ spreads a pre-gap $(\mathcal{L}, \mathcal{R})$ if $L \cap S =^* \emptyset$ and $S \subset^* R$ for each $L \in \mathcal{L}, R \in \mathcal{R}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A pre-gap is a *gap* if there is no *S* separating it.

A pre-gap is *tight* if there is no *S* spreading it.

Observation

If *A*, *B* separate a tight pre-gap, then $A =^* B$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Proposition

Chain S in $\mathcal{P}(\omega)$ is splitting iff every cut in S is a tight pre-gap.

Proposition

Chain S in $\mathcal{P}(\omega)$ is splitting iff every cut in S is a tight pre-gap.

Pre-gap $(\mathcal{L}, \mathcal{R})$ has type (κ, λ) if the (upwards) cofinality of \mathcal{L} is κ and the (downwards) cofinality of \mathcal{R} is λ .

Proposition

Chain S in $\mathcal{P}(\omega)$ is splitting iff every cut in S is a tight pre-gap.

Pre-gap $(\mathcal{L}, \mathcal{R})$ has type (κ, λ) if the (upwards) cofinality of \mathcal{L} is κ and the (downwards) cofinality of \mathcal{R} is λ .

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

There are no ($\leq \omega, \leq \omega$) gaps or tight pre-gaps.

Proposition

Chain S in $\mathcal{P}(\omega)$ is splitting iff every cut in S is a tight pre-gap.

Pre-gap $(\mathcal{L}, \mathcal{R})$ has type (κ, λ) if the (upwards) cofinality of \mathcal{L} is κ and the (downwards) cofinality of \mathcal{R} is λ .

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

There are no ($\leq \omega, \leq \omega$) gaps or tight pre-gaps.

Observation

There is a splitting chain in $\mathcal{P}(\omega)$ under CH.

Proposition

Chain S in $\mathcal{P}(\omega)$ is splitting iff every cut in S is a tight pre-gap.

Pre-gap $(\mathcal{L}, \mathcal{R})$ has type (κ, λ) if the (upwards) cofinality of \mathcal{L} is κ and the (downwards) cofinality of \mathcal{R} is λ .

There are no ($\leq \omega, \leq \omega$) gaps or tight pre-gaps.

Observation

There is a splitting chain in $\mathcal{P}(\omega)$ under CH.

Observation

If S is a splitting chain, then the rational numbers \mathbb{Q} are embedded in S (as a linear order).

Proposition

Chain S in $\mathcal{P}(\omega)$ is splitting iff every cut in S is a tight pre-gap.

Pre-gap $(\mathcal{L}, \mathcal{R})$ has type (κ, λ) if the (upwards) cofinality of \mathcal{L} is κ and the (downwards) cofinality of \mathcal{R} is λ .

There are no ($\leq \omega, \leq \omega$) gaps or tight pre-gaps.

Observation

There is a splitting chain in $\mathcal{P}(\omega)$ under CH.

Observation

If S is a splitting chain, then the rational numbers \mathbb{Q} are embedded in S (as a linear order).

Corollary

If *S* is a splitting chain, then $|S| = \mathfrak{c}$.

Observation

If S is a splitting chain, then the rational numbers \mathbb{Q} are embedded in S (as a linear order).

Corollary

Let $V \subset W$ be models of ZFC, such that there is a real number in $W \setminus V$. If $S \in V$, then S is not a splitting chain in W.

Observation

If S is a splitting chain, then the rational numbers \mathbb{Q} are embedded in S (as a linear order).

Corollary

Let $V \subset W$ be models of ZFC, such that there is a real number in $W \setminus V$. If $S \in V$, then S is not a splitting chain in W.

An (ω_1, ω_1) gap exists in ZFC. PFA implies that every gap of type $(\omega_1, ?)$ has type (ω_1, ω_1) .

Observation

If S is a splitting chain, then the rational numbers \mathbb{Q} are embedded in S (as a linear order).

Corollary

Let $V \subset W$ be models of ZFC, such that there is a real number in $W \setminus V$. If $S \in V$, then S is not a splitting chain in W.

An (ω_1, ω_1) gap exists in ZFC. PFA implies that every gap of type $(\omega_1, ?)$ has type (ω_1, ω_1) .

Theorem A tight (ω_1, ω_1) pre-gap exists iff $\mathfrak{p} = \omega_1$.

Corollary

PFA implies that there are no splitting chains in $\mathcal{P}(\omega)$.

Theorem

Assume CH and let κ be of uncountable cofinality. Then \mathbf{C}_{κ} forces that there is splitting chain.

(ロト・日本)・モン・モン・モー のへで

Theorem

Assume CH and let κ be of uncountable cofinality. Then \mathbf{C}_{κ} forces that there is splitting chain.

Theorem

Let κ be a regular uncountable cardinal. It is consistent that $\mathfrak{c} = \kappa$, *MA*(σ -centered), and a splitting chain exists.

Theorem

Assume CH and let κ be of uncountable cofinality. Then \mathbf{C}_{κ} forces that there is splitting chain.

Theorem

Let κ be a regular uncountable cardinal. It is consistent that $\mathfrak{c} = \kappa$, *MA*(σ -centered), and a splitting chain exists.

Let $\mathcal{G} = (\mathcal{L}, \mathcal{R})$ be a pre-gap. The separating forcing $\mathbf{P}_{\mathcal{G}}$ consists of conditions $p = (s_p, L_p, R_p)$ such that $s_p \in 2^{<\omega}$, $L_p \in [\mathcal{L}]^{<\omega}$, $R_p \in [\mathcal{R}]^{<\omega}$, and $L \setminus |s_p| \subset R$ for each $L \in L_p$, $R \in R_p$. q < p if $s_p \subset s_q$, $L_p \subset L_q$, $R_p \subset R_q$, and $L \cap [|s_p|, |s_q|) \subseteq s_q$ and $s_q \cap [|s_p|, |s_q|) \subseteq R$ for each $L \in L_p$ and $r \in R_p$.

Theorem

Assume CH and let κ be of uncountable cofinality. Then C_{κ} forces that there is splitting chain.

Theorem

Let κ be a regular uncountable cardinal. It is consistent that $\mathfrak{c} = \kappa$, *MA*(σ -centered), and a splitting chain exists.

Let $\mathcal{G} = (\mathcal{L}, \mathcal{R})$ be a pre-gap. The separating forcing $\mathbf{P}_{\mathcal{G}}$ consists of conditions $p = (s_p, L_p, R_p)$ such that $s_p \in 2^{<\omega}$, $L_p \in [\mathcal{L}]^{<\omega}$, $R_p \in [\mathcal{R}]^{<\omega}$, and $L \setminus |s_p| \subset R$ for each $L \in L_p$, $R \in R_p$. q < p if $s_p \subset s_q$, $L_p \subset L_q$, $R_p \subset R_q$, and $L \cap [|s_p|, |s_q|) \subseteq s_q$ and $s_q \cap [|s_p|, |s_q|) \subseteq R$ for each $L \in L_p$ and $r \in R_p$.

Theorem

If the type of \mathcal{G} is not (ω_1, ω_1) , then $\mathbf{P}_{\mathcal{G}}$ is c.c.c.

If the type of \mathcal{G} is $(\leq \omega, \leq \omega)$ then $\mathbf{P}_{\mathcal{G}}$ is the Cohen forcing.

Let $\mathcal{G} = (\mathcal{L}, \mathcal{R})$ be a pre-gap. The separating forcing $\mathbf{P}_{\mathcal{G}}$ consists of conditions $p = (s_p, L_p, R_p)$ such that $s_p \in 2^{<\omega}$, $L_p \in [\mathcal{L}]^{<\omega}$, $R_p \in [\mathcal{R}]^{<\omega}$, and $L \setminus |s_p| \subset R$ for each $L \in L_p$, $R \in R_p$. q < p if $s_p \subset s_q$, $L_p \subset L_q$, $R_p \subset R_q$, and $L \cap [|s_p|, |s_q|) \subseteq s_q$ and $s_q \cap [|s_p|, |s_q|) \subseteq R$ for each $L \in L_p$ and $r \in R_p$. Theorem If the type of \mathcal{G} is not (ω_1, ω_1) , then $\mathbf{P}_{\mathcal{G}}$ is c.c.c.

If the type of \mathcal{G} is $(\leq \omega, \leq \omega)$ then $\mathbf{P}_{\mathcal{G}}$ is the Cohen forcing.

Let G be a $\mathbf{P}_{\mathcal{G}}$ generic filter. The set $S = \bigcup \{ s_p : p \in G \}$ separates \mathcal{G} . Proposition

If $A \in V$ spreads \mathcal{G} , then S splits A.

Proposition

Let \mathcal{G} be a tight gap. Adding any number of Cohen reals does not add a subset spreading \mathcal{G} .