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General properties of * operation for abelian (topological) groups.

(X,+) - an abelian group, A, B C X,
A+B:={a+b:acAbeB}, —A:={—-a:ac A},
A+ x:=A+ {x} for x € X.

Definition
For F C P(X) let

F*={ACX :Veer A+F #X}

or equivalently F*:={AC X :Vecr Ixex (x —A)NF = 0}.

Fo ={ACX :Veer F-A#£ X} ={AC X :Vecr Txex (A+x)NF = 0}
If we consider a family F which is reflection invariant then F, = F*.

J. Pawlikowski, M. Sabok, Two Stars, Arch. Math. Logic 47, 2008.
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General properties of * operation for abelian (topological) groups.

F* = {AC X :Vrer A+ F #X)
We write F** := (F*)* and F*(+1) .= (F*M)* for n > 2.

Let F,G be arbitrary nonempty families of subsets of X. Then
e GC F*& FcCgr,
o F C F*,
o G CF= F*cCg*
@ F*is closed under taking subsets and it is translation invariant,
o F*(n+2) — 7*(n) for n > 1.

J. Pawlikowski, M. Sabok, Two Stars, Arch. Math. Logic 47, 2008.
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General properties of * operation for abelian (topological) groups.

F*={ACX :Veer A+ F £ X}

Theorem

For any F C P(X) the following conditions are equivalent:
® Vagr (FU{A})" #F~,
o F* =F.

Corollary

| 5\

For any F C P(X) the family F** is a maximal element (with respect to
inclusion) of the set {G C P(X) : G* = F*}.

v
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General properties of * operation for abelian (topological) groups.

Theorem

Fin* is the union of all proper, translation invariant ideals of
subsets of X.

Theorem

| A\

Count™ is the union of all proper, translation invariant o-ideals of
subsets of X.

For X = R the unit interval [0, 1] is an example of a set belonging
to Fin* but not to Count™.
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It works also for a o-compact metrizable group.
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On the real line

Galvin F., Mycielski J., Solovay R. M., Strong measure zero sets, Notices Am. Math. Soc. 26(3), 1979.

Kf=8M2Z.
Borel E., Sur la classification des ensembles de mesure nulle, Bull. Soc. Math. France, 47, 1919.
The Borel Conjecture (BC): SMZ = Count.
Lusin N., Théorie des fonctions, CRAS Paris (1958) 1914.
Under CH: SMZ\ Count # 0.
Laver R., On the consistency of the Borel Conjecture, Acta Math. 137 (3-4), 1976.
In Laver’'s model: K* = Count.
In ZFC: K C SMZ* C Count*.
K # Count™.

We will show under CH
K=SMz*.
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Assume CH. If 7 C P(R) is a continuum generated, translation
and reflection invariant proper o-ideal, and A ¢ 7, then

| \

(J U{AD* € J*.

A




On sets which can be moved away from sets of a certain family

On the real line

Definition
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Theorem

Assume CH. If 7 C P(R) is a continuum generated, translation
and reflection invariant proper o-ideal, and A ¢ 7, then
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(J U{AD* € J*.

A

The proof here repeats reasoning from
T. Weiss, Properties of the intersection ideal M N N revisited, Bulletin

Polish Acad. Sci. Math. 65, 2017
with slight modifications.
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Assume CH. If 7 C P(R) is a continuum generated, translation
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Corollary

Assume CH. If 7 C P(R) is a continuum generated, translation
and reflection invariant proper o-ideal, then

Corollary
Assume CH.

K=8MzZ"
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On the real line

A,B C P(R)

A+B:={A+B:Ac A, B e B},

Al:={BCR:3ae4 AD B}.

It is easy to observe that if A, B are o-ideals, then (A + B) | is also a o-ideal.

Define
O =(K+SMZ2)|.

O is a proper o-ideal invariant under translations.

Count C OF.

KcoO = O*CcK*=SMZ.
SMZcCO = O* CSMZ* =K (under CH).

Therefore, assuming CH,

Count CO*C KNSM2Z.
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Let F be a family of subsets of R. We say that a set X, X C R is F- additive
if for every set F € F the set X 4+ F belongs to F.

Theorem

The following conditions are equivalent:
@ PecOr,
@ P is SMZ-additive

and the condition
@ P is [C-additive (meager-additive)

implies the previous two.
Under CH all three conditions are equivalent.

O. Zindulka, Strong measure zero and meager-additive sets through the prism
of fractal measures - submitted

O* is a o-ideal.
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On the real line

T. J. Carlson, Strong measure zero and strongly meager sets, Proc. Amer. Math. Soc., 118(2), 1993

SM =N",

where N is the o-ideal of Lebesgue null sets.

Corollary

Assume CH. If 7 C P(R) is a continuum generated, translation and reflection invariant proper o-ideal,
then
T =J.

| \

Corollary
Assume CH.

N =SM*.

\

The last corollary gives the positive answer to the question 1369 from
W. Seredynski, Some operations related to translations, Colloq. Math. 57, 1989.
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Thank You for Your kind attention.



