On sets which can be moved away from sets of a certain family

Grażyna Horbaczewska and Sebastian Lindner University of Łódź

UMI-SIMAI-PTM Joint Meeting 2018
Wrocław

General properties of * operation for abelian (topological) groups.
$(X,+)$ - an abelian group, $A, B \subset X$, $A+B:=\{a+b: a \in A, b \in B\},-A:=\{-a: a \in A\}$, $A+x:=A+\{x\}$ for $x \in X$.

Definition

For $\mathcal{F} \subset P(X)$ let
or equivalently

$$
\mathcal{F}:=\left\{A \subset X: \forall_{F \in \mathcal{F}} A+F \neq X\right\}
$$

$$
\mathcal{F}^{*}:=\left\{A \subset X: \forall_{F \in \mathcal{F}} \exists_{x \in X}(x-A) \cap F=\emptyset\right\} .
$$

If we consider a family \mathcal{F} which is reflection invariant then $\mathcal{F}_{*}=\mathcal{F}^{*}$

1. Pawlikowski, M. Sabok, Two Stars, Arch. Math Logic 17, 2008.

General properties of * operation for abelian (topological) groups.

$(X,+)$ - an abelian group, $A, B \subset X$,
$A+B:=\{a+b: a \in A, b \in B\},-A:=\{-a: a \in A\}$,
$A+x:=A+\{x\}$ for $x \in X$.

Definition

For $\mathcal{F} \subset P(X)$ let

$$
\mathcal{F}^{*}:=\left\{A \subset X: \forall_{F \in \mathcal{F}} A+F \neq X\right\}
$$

or equivalently $\quad \mathcal{F}^{*}:=\left\{A \subset X: \forall F \in \mathcal{F} \exists_{x \in X}(x-A) \cap F=\emptyset\right\}$.
\square
If we consider a family \mathcal{F} which is reflection invariant then $\mathcal{F}=\mathcal{F}$
J. Pawlikowski, M. Sabok, Two Stars, Arch. Math. Logic 47, 2008.

General properties of * operation for abelian (topological) groups.

$(X,+)$ - an abelian group, $A, B \subset X$,
$A+B:=\{a+b: a \in A, b \in B\},-A:=\{-a: a \in A\}$,
$A+x:=A+\{x\}$ for $x \in X$.

Definition

For $\mathcal{F} \subset P(X)$ let

$$
\mathcal{F}^{*}:=\left\{A \subset X: \forall_{F \in \mathcal{F}} A+F \neq X\right\}
$$

or equivalently

$$
\mathcal{F}^{*}:=\left\{A \subset X: \forall_{F \in \mathcal{F}} \exists_{x \in X}(x-A) \cap F=\emptyset\right\} .
$$

\square
$\mathcal{F}_{*}:=\left\{A \subset X: \forall_{F \in \mathcal{F}} F-A \neq X\right\}=\left\{A \subset X: \forall_{F \in \mathcal{F}} \exists_{x \in X}(A+x) \cap F=\emptyset\right\}$
If we consider a family \mathcal{F} which is reflection invariant then $\mathcal{F}=\mathcal{F}^{*}$
J. Pawlikowski, M. Sabok, Two Stars, Arch. Math. Logic 47, 2008.

General properties of * operation for abelian (topological) groups.

$(X,+)$ - an abelian group, $A, B \subset X$,
$A+B:=\{a+b: a \in A, b \in B\},-A:=\{-a: a \in A\}$,
$A+x:=A+\{x\}$ for $x \in X$.

Definition

For $\mathcal{F} \subset P(X)$ let

$$
\mathcal{F}^{*}:=\left\{A \subset X: \forall_{F \in \mathcal{F}} A+F \neq X\right\}
$$

or equivalently $\quad \mathcal{F}^{*}:=\left\{A \subset X: \forall F \in \mathcal{F} \exists_{X \in X}(x-A) \cap F=\emptyset\right\}$.

$$
\mathcal{F}_{*}:=\left\{A \subset X: \forall_{F \in \mathcal{F}} F-A \neq X\right\}=\left\{A \subset X: \forall_{F \in \mathcal{F}} \exists_{x \in X}(A+x) \cap F=\emptyset\right\}
$$

If we consider a family \mathcal{F} which is reflection invariant then $\mathcal{F}_{*}=\mathcal{F}^{*}$
J. Pawlikowski, M. Sabok, Two Stars, Arch. Math. Logic 47, 2008.

General properties of * operation for abelian (topological) groups.

$(X,+)$ - an abelian group, $A, B \subset X$,
$A+B:=\{a+b: a \in A, b \in B\},-A:=\{-a: a \in A\}$,
$A+x:=A+\{x\}$ for $x \in X$.

Definition

For $\mathcal{F} \subset P(X)$ let

$$
\mathcal{F}^{*}:=\left\{A \subset X: \forall_{F \in \mathcal{F}} A+F \neq X\right\}
$$

or equivalently

$$
\mathcal{F}^{*}:=\left\{A \subset X: \forall_{F \in \mathcal{F}} \exists_{x \in X}(x-A) \cap F=\emptyset\right\} .
$$

$\mathcal{F}_{*}:=\left\{A \subset X: \forall_{F \in \mathcal{F}} F-A \neq X\right\}=\left\{A \subset X: \forall_{F \in \mathcal{F}} \exists_{x \in X}(A+x) \cap F=\emptyset\right\}$
If we consider a family \mathcal{F} which is reflection invariant then $\mathcal{F}_{*}=\mathcal{F}^{*}$.
J. Pawlikowski, M. Sabok, Two Stars, Arch. Math. Logic 47, 2008.

General properties of * operation for abelian (topological) groups.

$$
\mathcal{F}^{*}:=\left\{A \subset X: \forall_{F \in \mathcal{F}} A+F \neq X\right\}
$$

We write $\mathcal{F}^{* *}:=\left(\mathcal{F}^{*}\right)^{*}$ and $\mathcal{F}^{*(n+1)}:=\left(\mathcal{F}^{*(n)}\right)^{*}$ for $n \geqslant 2$.

Proposition

Let \mathcal{F}, \mathcal{G} be arbitrary nonempty families of subsets of X. Then

- \mathcal{F}^{*} is closed under taking subsets and it is translation invariant,
- $\mathcal{F}^{*(n+2)}=\mathcal{F}^{*(n)}$ for $n \geqslant 1$.
J. Pawlikowski, M. Sabok, Two Stars, Arch. Math. Logic 47, 2008.

General properties of * operation for abelian (topological) groups.

$$
\mathcal{F}^{*}:=\left\{A \subset X: \forall_{F \in \mathcal{F}} A+F \neq X\right\}
$$

We write $\mathcal{F}^{* *}:=\left(\mathcal{F}^{*}\right)^{*}$ and $\mathcal{F}^{*(n+1)}:=\left(\mathcal{F}^{*(n)}\right)^{*}$ for $n \geqslant 2$.

Proposition

Let \mathcal{F}, \mathcal{G} be arbitrary nonempty families of subsets of X. Then

- $\mathcal{G} \subset \mathcal{F}^{*} \Leftrightarrow \mathcal{F} \subset \mathcal{G}^{*}$,
- $\mathcal{F} \subset \mathcal{F}^{* *}$,
- $\mathcal{G} \subset \mathcal{F} \Rightarrow \mathcal{F}^{*} \subset \mathcal{G}^{*}$,
- \mathcal{F}^{*} is closed under taking subsets and it is translation invariant,
- $\mathcal{F}^{*(n+2)}=\mathcal{F}^{*(n)}$ for $n \geqslant 1$.
J. Pawlikowski, M. Sabok, Two Stars, Arch. Math. Logic 47, 2008.

General properties of * operation for abelian (topological) groups.

$$
\mathcal{F}^{*}:=\left\{A \subset X: \forall_{F \in \mathcal{F}} A+F \neq X\right\}
$$

We write $\mathcal{F}^{* *}:=\left(\mathcal{F}^{*}\right)^{*}$ and $\mathcal{F}^{*(n+1)}:=\left(\mathcal{F}^{*(n)}\right)^{*}$ for $n \geqslant 2$.

Proposition

Let \mathcal{F}, \mathcal{G} be arbitrary nonempty families of subsets of X. Then

- $\mathcal{G} \subset \mathcal{F}^{*} \Leftrightarrow \mathcal{F} \subset \mathcal{G}^{*}$,
- $\mathcal{F} \subset \mathcal{F}^{* *}$,
- $\mathcal{G} \subset \mathcal{F} \Rightarrow \mathcal{F}^{*} \subset \mathcal{G}^{*}$,
- \mathcal{F}^{*} is closed under taking subsets and it is translation invariant,
- $\mathcal{I}^{*}(n+2)=\mathcal{I}^{*}(n)$ for $n \geqslant 1$.
J. Pawlikowski, M. Sabok, Two Stars, Arch. Math. Logic 47, 2008.

General properties of * operation for abelian (topological) groups.

$$
\mathcal{F}^{*}:=\left\{A \subset X: \forall_{F \in \mathcal{F}} A+F \neq X\right\}
$$

We write $\mathcal{F}^{* *}:=\left(\mathcal{F}^{*}\right)^{*}$ and $\mathcal{F}^{*(n+1)}:=\left(\mathcal{F}^{*(n)}\right)^{*}$ for $n \geqslant 2$.

Proposition

Let \mathcal{F}, \mathcal{G} be arbitrary nonempty families of subsets of X. Then

- $\mathcal{G} \subset \mathcal{F}^{*} \Leftrightarrow \mathcal{F} \subset \mathcal{G}^{*}$,
- $\mathcal{F} \subset \mathcal{F}^{* *}$,
- $\mathcal{G} \subset \mathcal{F} \Rightarrow \mathcal{F}^{*} \subset \mathcal{G}^{*}$,
- \mathcal{F}^{*} is closed under taking subsets and it is translation invariant,
- $\mathcal{F}^{*}(n+2)=\mathcal{F}^{*}(n)$ for $n \geqslant 1$.
J. Pawlikowski, M. Sabok, Two Stars, Arch. Math. Logic 47, 2008.

General properties of * operation for abelian (topological) groups.

$$
\mathcal{F}^{*}:=\left\{A \subset X: \forall_{F \in \mathcal{F}} A+F \neq X\right\}
$$

We write $\mathcal{F}^{* *}:=\left(\mathcal{F}^{*}\right)^{*}$ and $\mathcal{F}^{*(n+1)}:=\left(\mathcal{F}^{*(n)}\right)^{*}$ for $n \geqslant 2$.

Proposition

Let \mathcal{F}, \mathcal{G} be arbitrary nonempty families of subsets of X. Then

- $\mathcal{G} \subset \mathcal{F}^{*} \Leftrightarrow \mathcal{F} \subset \mathcal{G}^{*}$,
- $\mathcal{F} \subset \mathcal{F}^{* *}$,
- $\mathcal{G} \subset \mathcal{F} \Rightarrow \mathcal{F}^{*} \subset \mathcal{G}^{*}$,
- \mathcal{F}^{*} is closed under taking subsets and it is translation invariant,
J. Pawlikowski, M. Sabok, Two Stars, Arch. Math. Logic 47, 2008.

General properties of * operation for abelian (topological) groups.

$$
\mathcal{F}^{*}:=\left\{A \subset X: \forall_{F \in \mathcal{F}} A+F \neq X\right\}
$$

We write $\mathcal{F}^{* *}:=\left(\mathcal{F}^{*}\right)^{*}$ and $\mathcal{F}^{*(n+1)}:=\left(\mathcal{F}^{*(n)}\right)^{*}$ for $n \geqslant 2$.

Proposition

Let \mathcal{F}, \mathcal{G} be arbitrary nonempty families of subsets of X. Then

- $\mathcal{G} \subset \mathcal{F}^{*} \Leftrightarrow \mathcal{F} \subset \mathcal{G}^{*}$,
- $\mathcal{F} \subset \mathcal{F}^{* *}$,
- $\mathcal{G} \subset \mathcal{F} \Rightarrow \mathcal{F}^{*} \subset \mathcal{G}^{*}$,
- \mathcal{F}^{*} is closed under taking subsets and it is translation invariant,
- $\mathcal{F}^{*(n+2)}=\mathcal{F}^{*(n)}$ for $n \geqslant 1$.
J. Pawlikowski, M. Sabok, Two Stars, Arch. Math. Logic 47, 2008.

General properties of * operation for abelian (topological) groups.

$$
\mathcal{F}^{*}:=\left\{A \subset X: \forall_{F \in \mathcal{F}} A+F \neq X\right\}
$$

Theorem

For any $\mathcal{F} \subset P(X)$ the following conditions are equivalent:

- $\forall_{A \notin \mathcal{F}}(\mathcal{F} \cup\{A\})^{*} \neq \mathcal{F}^{*}$,
- $\mathcal{F}^{* *}=\mathcal{F}$.

Corollary
For any $\mathcal{F} \subset P(X)$ the family $\mathcal{F}^{* *}$ is a maximal element (with respect to inclusion) of the set $\left\{\mathcal{G} \subset P(X): \mathcal{G}^{*}=\mathcal{F}^{*}\right\}$

General properties of * operation for abelian (topological) groups.

$$
\mathcal{F}^{*}:=\left\{A \subset X: \forall_{F \in \mathcal{F}} A+F \neq X\right\}
$$

Theorem

For any $\mathcal{F} \subset P(X)$ the following conditions are equivalent:

- $\forall_{A \notin \mathcal{F}}(\mathcal{F} \cup\{A\})^{*} \neq \mathcal{F}^{*}$,
- $\mathcal{F}^{* *}=\mathcal{F}$.

Corollary

For any $\mathcal{F} \subset P(X)$ the family $\mathcal{F}^{* *}$ is a maximal element (with respect to inclusion) of the set $\left\{\mathcal{G} \subset P(X): \mathcal{G}^{*}=\mathcal{F}^{*}\right\}$.

General properties of * operation for abelian (topological) groups.

Theorem

\mathcal{F} in* is the union of all proper, translation invariant ideals of subsets of X.

Theorem
Count* is the union of all proper, translation invariant σ-ideals of subsets of X.

For $X=\mathbb{R}$ the unit interval $[0,1]$ is an example of a set belonging to \mathcal{F} in* but not to \mathcal{C} ount

General properties of * operation for abelian (topological) groups.

Theorem

\mathcal{F} in* is the union of all proper, translation invariant ideals of subsets of X.

Theorem

Count* is the union of all proper, translation invariant σ-ideals of subsets of X.

For $X=\mathbb{R}$ the unit interval $[0,1]$ is an example of a set belonging
to \mathcal{F} in* but not to \mathcal{C} ount

General properties of * operation for abelian (topological) groups.

Theorem

\mathcal{F} in* is the union of all proper, translation invariant ideals of subsets of X.

Theorem

Count* is the union of all proper, translation invariant σ-ideals of subsets of X.

For $X=\mathbb{R}$ the unit interval $[0,1]$ is an example of a set belonging to \mathcal{F} in ${ }^{*}$ but not to $\mathcal{C o u n t}^{*}$.

On the real line

\mathcal{K} - the σ-ideal of all meager sets, $\mathcal{S M Z}$ - the σ-ideal of all strong measure zero sets.
A set $E \subset \mathbb{R}$ is of strong measure zero if for each sequence of positive reals $\left\{\epsilon_{n}\right\}_{n \in \mathbb{N}}$ there exists a sequence of intervals $\left\{I_{n}\right\}_{n} \in \mathbb{N}$ such that

$$
E \subset \bigcup_{n \in \mathbb{N}} I_{n} \text { and } m\left(I_{n}\right) \leqslant \epsilon_{n} \text { for } n \in \mathbb{N} \text {. }
$$

Galvin F., Mycielski J., Solovay R. M., Strong measure zero sets, Notices Am. Math. Soc. 26(3), 1979, Abstract A-280

On the real line

\mathcal{K} - the σ-ideal of all meager sets, $\mathcal{S M Z}$ - the σ-ideal of all strong measure zero sets.

A set $E \subset \mathbb{R}$ is of strong measure zero if for each sequence of positive reals $\left\{\epsilon_{n}\right\}_{n \in \mathbb{N}}$ there exists a sequence of intervals $\left\{I_{n}\right\}_{n} \in \mathbb{N}$ such that

$$
E \subset \bigcup_{n \in \mathbb{N}} I_{n} \text { and } m\left(I_{n}\right) \leqslant \epsilon_{n} \text { for } n \in \mathbb{N} \text {. }
$$

Galvin F., Mycielski J., Solovay R. M., Strong measure zero sets, Notices Am. Math. Soc. 26(3), 1979, Abstract A-280

$$
\mathcal{K}^{*}=\mathcal{S} \mathcal{M Z} .
$$

It works also for a σ-compact metrizable group.

On the real line

\mathcal{K} - the σ-ideal of all meager sets, $\mathcal{S M Z}$ - the σ-ideal of all strong measure zero sets.

A set $E \subset \mathbb{R}$ is of strong measure zero if for each sequence of positive reals $\left\{\epsilon_{n}\right\}_{n \in \mathbb{N}}$ there exists a sequence of intervals $\left\{I_{n}\right\}_{n} \in \mathbb{N}$ such that

$$
E \subset \bigcup_{n \in \mathbb{N}} I_{n} \text { and } m\left(I_{n}\right) \leqslant \epsilon_{n} \text { for } n \in \mathbb{N} \text {. }
$$

Galvin F., Mycielski J., Solovay R. M., Strong measure zero sets, Notices Am. Math. Soc. 26(3), 1979, Abstract A-280

$$
\mathcal{K}^{*}=\mathcal{S} \mathcal{M Z} .
$$

It works also for a σ-compact metrizable group.

On the real line

Galvin F., Mycielski J., Solovay R. M., Strong measure zero sets, Notices Am. Math. Soc. 26(3), 1979.

$$
\mathcal{K}^{*}=\mathcal{S M Z}
$$

```
Borel E., Sur la classification des ensembles de mesure nulle, Bull. Soc. Math. France, 47, 1919.
The Borel Conjecture (BC)
SMZ = Count.
Lusin N., Théorie des fonctions, CRAS Paris (1958) }1914
Under C'H:
                SMZ\Count }=
Laver R., On the consistency of the Borel Conjecture, Acta Math. }137\mathrm{ (3-4), }197
In Laver's model:
                                K* = Count
In ZFC: K}\subset\mathcal{SMZZ
```

$\mathcal{K} \neq$ Count *

We will show under CH

On the real line

Galvin F., Mycielski J., Solovay R. M., Strong measure zero sets, Notices Am. Math. Soc. 26(3), 1979.

$$
\mathcal{K}^{*}=\mathcal{S M Z} .
$$

Borel E., Sur la classification des ensembles de mesure nulle, Bull. Soc. Math. France, 47, 1919. The Borel Conjecture (BC) : $\quad \mathcal{S M Z}=$ Count.

Lusin N., Théorie des fonctions, CRAS Paris (1958) 1914. Under CH: SMZ Count $\neq \emptyset$. Laver R., On the consistency of the Borel Conjecture, Acta Math. 137 (3-4), 1976 In Laver's model $\mathcal{K}^{*}=$ Count In ZFC

$\mathcal{K} \neq \mathcal{C o u n t}^{*}$

On the real line

Galvin F., Mycielski J., Solovay R. M., Strong measure zero sets, Notices Am. Math. Soc. 26(3), 1979.

$$
\mathcal{K}^{*}=\mathcal{S} \mathcal{M Z}
$$

Borel E., Sur la classification des ensembles de mesure nulle, Bull. Soc. Math. France, 47, 1919.
The Borel Conjecture (BC):
$\mathcal{S M Z}=\mathcal{C}$ ount .

Lusin N., Théorie des fonctions, CRAS Paris (1958) 1914.
Under $\mathrm{CH}: \quad \mathcal{S M Z} \backslash$ Count $\neq \emptyset$.
Laver R., On the consistency of the Borel Conjecture, Acta Math. 137 (3-4), 1976.
In Laver's model: $\quad \mathcal{K}^{*}=\mathcal{C}$ ount.
In ZFC:
$\mathcal{K} \subset \mathcal{S M Z}{ }^{*} \subset$ Count*
$\mathcal{K} \neq$ Count
We will show under CH

On the real line

Galvin F., Mycielski J., Solovay R. M., Strong measure zero sets, Notices Am. Math. Soc. 26(3), 1979.

$$
\mathcal{K}^{*}=\mathcal{S M Z}
$$

Borel E., Sur la classification des ensembles de mesure nulle, Bull. Soc. Math. France, 47, 1919.
The Borel Conjecture (BC):
$\mathcal{S M Z}=\mathcal{C}$ ount .

Lusin N., Théorie des fonctions, CRAS Paris (1958) 1914.
Under $\mathrm{CH}: \quad \mathcal{S M Z} \backslash$ Count $\neq \emptyset$.
Laver R., On the consistency of the Borel Conjecture, Acta Math. 137 (3-4), 1976.
In Laver's model: $\quad \mathcal{K}^{*}=\mathcal{C}$ ount.
In ZFC: $\quad \mathcal{K} \subset \mathcal{S M Z} \mathcal{Z}^{*} \subset \mathcal{C o u n t}^{*}$.
$\mathcal{K} \neq$ Count

On the real line

Galvin F., Mycielski J., Solovay R. M., Strong measure zero sets, Notices Am. Math. Soc. 26(3), 1979.

$$
\mathcal{K}^{*}=\mathcal{S M Z}
$$

Borel E., Sur la classification des ensembles de mesure nulle, Bull. Soc. Math. France, 47, 1919.
The Borel Conjecture (BC):
$\mathcal{S M Z}=\mathcal{C}$ ount .

Lusin N., Théorie des fonctions, CRAS Paris (1958) 1914.
Under $\mathrm{CH}: \quad \mathcal{S M Z} \backslash$ Count $\neq \emptyset$.
Laver R., On the consistency of the Borel Conjecture, Acta Math. 137 (3-4), 1976.
In Laver's model: $\quad \mathcal{K}^{*}=\mathcal{C}$ ount.
In ZFC: $\quad \mathcal{K} \subset \mathcal{S M Z} \mathcal{Z}^{*} \subset \mathcal{C o u n t}^{*}$.

$$
\mathcal{K} \neq \mathcal{C o u n t}^{*}
$$

On the real line

Galvin F., Mycielski J., Solovay R. M., Strong measure zero sets, Notices Am. Math. Soc. 26(3), 1979.

$$
\mathcal{K}^{*}=\mathcal{S M Z}
$$

Borel E., Sur la classification des ensembles de mesure nulle, Bull. Soc. Math. France, 47, 1919.
The Borel Conjecture (BC):
$\mathcal{S M Z}=\mathcal{C}$ ount .

Lusin N., Théorie des fonctions, CRAS Paris (1958) 1914.
Under $\mathrm{CH}: \quad \mathcal{S M Z} \backslash$ Count $\neq \emptyset$.
Laver R., On the consistency of the Borel Conjecture, Acta Math. 137 (3-4), 1976.
In Laver's model: $\quad \mathcal{K}^{*}=\mathcal{C}$ ount.
In ZFC: $\quad \mathcal{K} \subset \mathcal{S M Z} \mathcal{Z}^{*} \subset \mathcal{C o u n t}^{*}$.

$$
\mathcal{K} \neq \text { Count }^{*}
$$

We will show under CH

$$
\mathcal{K}=\mathcal{S} \mathcal{M} \mathcal{Z}^{*}
$$

On the real line

Definition

We say that an ideal $\mathcal{J} \subset P(X)$ is continuum generated if there exists a family $\mathcal{F} \subset \mathcal{J}$ of subets of X with $\operatorname{card} \mathcal{F}=\mathfrak{c}$ such that for every set $I \in \mathcal{J}$ there exists a set $F \in \mathcal{F}$ covering $I(I \subset F)$.

Theorem

Assume CH . If $\mathcal{J} \subset P(\mathbb{R})$ is a continuum generated, translation and reflection invariant proper σ-ideal, and $A \notin \mathcal{J}$, then

$$
(\mathcal{J} \cup\{A\})^{*} \subsetneq \mathcal{J}^{*} .
$$

The proof here repeats reasoning from
T. Weiss, Properties of the intersection ideal $\mathcal{M} \cap \mathcal{N}$ revisited, Bulletin

Polish Acad. Sci. Math. 65, 2017
with slight modifications.

Definition

We say that an ideal $\mathcal{J} \subset P(X)$ is continuum generated if there exists a family $\mathcal{F} \subset \mathcal{J}$ of subets of X with $\operatorname{card} \mathcal{F}=\mathfrak{c}$ such that for every set $I \in \mathcal{J}$ there exists a set $F \in \mathcal{F}$ covering $I(I \subset F)$.

Theorem

Assume CH . If $\mathcal{J} \subset P(\mathbb{R})$ is a continuum generated, translation and reflection invariant proper σ-ideal, and $A \notin \mathcal{J}$, then

$$
(\mathcal{J} \cup\{A\})^{*} \subsetneq \mathcal{J}^{*} .
$$

The proof here repeats reasoning from
T. Weiss, Properties of the intersection ideal $\mathcal{M} \cap \mathcal{N}$ revisited, Bulletin Polish Acad. Sci. Math. 65, 2017 with slight modifications.

On the real line

Theorem

Assume CH . If $\mathcal{J} \subset P(\mathbb{R})$ is a continuum generated, translation and reflection invariant proper σ-ideal, and $A \notin \mathcal{J}$, then

$$
(\mathcal{J} \cup\{A\})^{*} \subsetneq \mathcal{J}^{*} .
$$

Corollary

Assume CH . If $\mathcal{J} \subset P(\mathbb{R})$ is a continuum generated, translation and reflection invariant proper σ-ideal, then

$$
\mathcal{J}^{* *}=\mathcal{J} .
$$

Corollary
Assume CH.

On the real line

Theorem

Assume CH . If $\mathcal{J} \subset P(\mathbb{R})$ is a continuum generated, translation and reflection invariant proper σ-ideal, and $A \notin \mathcal{J}$, then

$$
(\mathcal{J} \cup\{A\})^{*} \subsetneq \mathcal{J}^{*} .
$$

Corollary

Assume CH . If $\mathcal{J} \subset P(\mathbb{R})$ is a continuum generated, translation and reflection invariant proper σ-ideal, then

$$
\mathcal{J}^{* *}=\mathcal{J} .
$$

Corollary
Assume CH.

$$
\mathcal{K}=\mathcal{S} \mathcal{M} \mathcal{Z}^{*}
$$

On the real line
$\mathcal{A}, \mathcal{B} \subset P(\mathbb{R})$
$\mathcal{A}+\mathcal{B}:=\{A+B: A \in \mathcal{A}, B \in \mathcal{B}\}$,
$\mathcal{A} \downarrow:=\left\{B \subset \mathbb{R}: \exists_{A \in \mathcal{A}} A \supset B\right\}$.
It is easy to observe that if \mathcal{A}, \mathcal{B} are σ-ideals, then $(\mathcal{A}+\mathcal{B}) \downarrow$ is also a σ-ideal.
Define

\mathcal{O} is a proper σ-ideal invariant under translations.
Count $\subset \mathcal{O}^{*}$

Therefore, assuming CH ,
Count $\subset O^{*} \subset K \cap S M Z$.

On the real line

```
\(\mathcal{A}, \mathcal{B} \subset P(\mathbb{R})\)
\(\mathcal{A}+\mathcal{B}:=\{A+B: A \in \mathcal{A}, B \in \mathcal{B}\}\),
\(\mathcal{A} \downarrow:=\left\{B \subset \mathbb{R}: \exists_{A \in \mathcal{A}} A \supset B\right\}\).
```

It is easy to observe that if \mathcal{A}, \mathcal{B} are σ-ideals, then $(\mathcal{A}+\mathcal{B}) \downarrow$ is also a σ-ideal.

\mathcal{O} is a proper σ-ideal invariant under translations.

On the real line
$\mathcal{A}, \mathcal{B} \subset P(\mathbb{R})$
$\mathcal{A}+\mathcal{B}:=\{A+B: A \in \mathcal{A}, B \in \mathcal{B}\}$,
$\mathcal{A} \downarrow:=\left\{B \subset \mathbb{R}: \exists_{A \in \mathcal{A}} A \supset B\right\}$.
It is easy to observe that if \mathcal{A}, \mathcal{B} are σ-ideals, then $(\mathcal{A}+\mathcal{B}) \downarrow$ is also a σ-ideal.
Define

$$
\mathcal{O}:=(\mathcal{K}+\mathcal{S M Z}) \downarrow
$$

\mathcal{O} is a proper σ-ideal invariant under translations.

Therefore, assuming CH ,

On the real line
$\mathcal{A}, \mathcal{B} \subset P(\mathbb{R})$
$\mathcal{A}+\mathcal{B}:=\{A+B: A \in \mathcal{A}, B \in \mathcal{B}\}$,
$\mathcal{A} \downarrow:=\left\{B \subset \mathbb{R}: \exists_{A \in \mathcal{A}} A \supset B\right\}$.
It is easy to observe that if \mathcal{A}, \mathcal{B} are σ-ideals, then $(\mathcal{A}+\mathcal{B}) \downarrow$ is also a σ-ideal.
Define

$$
\mathcal{O}:=(\mathcal{K}+\mathcal{S M Z}) \downarrow
$$

\mathcal{O} is a proper σ-ideal invariant under translations.

Therefore, assuming CH ,
count $\subset O^{*} \subset K \cap S M Z$.

On the real line

$\mathcal{A}, \mathcal{B} \subset P(\mathbb{R})$
$\mathcal{A}+\mathcal{B}:=\{A+B: A \in \mathcal{A}, B \in \mathcal{B}\}$,
$\mathcal{A} \downarrow:=\left\{B \subset \mathbb{R}: \exists_{A \in \mathcal{A}} A \supset B\right\}$.
It is easy to observe that if \mathcal{A}, \mathcal{B} are σ-ideals, then $(\mathcal{A}+\mathcal{B}) \downarrow$ is also a σ-ideal.
Define

$$
\mathcal{O}:=(\mathcal{K}+\mathcal{S M} \mathcal{Z}) \downarrow
$$

\mathcal{O} is a proper σ-ideal invariant under translations.

$$
\text { Count } \subset \mathcal{O}^{*}
$$

Therefore, assuming CH ,
count $\subset O^{*} \subset K \cap S M Z$.

On the real line

$\mathcal{A}, \mathcal{B} \subset P(\mathbb{R})$
$\mathcal{A}+\mathcal{B}:=\{A+B: A \in \mathcal{A}, B \in \mathcal{B}\}$,
$\mathcal{A} \downarrow:=\left\{B \subset \mathbb{R}: \exists_{A \in \mathcal{A}} A \supset B\right\}$.
It is easy to observe that if \mathcal{A}, \mathcal{B} are σ-ideals, then $(\mathcal{A}+\mathcal{B}) \downarrow$ is also a σ-ideal.
Define

$$
\mathcal{O}:=(\mathcal{K}+\mathcal{S M} \mathcal{Z}) \downarrow
$$

\mathcal{O} is a proper σ-ideal invariant under translations.

$$
\text { Count } \subset \mathcal{O}^{*}
$$

$$
\mathcal{K} \subset \mathcal{O} \quad \Rightarrow \quad \mathcal{O}^{*} \subset \mathcal{K}^{*}=\mathcal{S} \mathcal{M Z}
$$

Therefore, assuming CH ,
Count $\subset O^{*} \subset K \cap S M Z$.

On the real line

$\mathcal{A}, \mathcal{B} \subset P(\mathbb{R})$
$\mathcal{A}+\mathcal{B}:=\{A+B: A \in \mathcal{A}, B \in \mathcal{B}\}$,
$\mathcal{A} \downarrow:=\left\{B \subset \mathbb{R}: \exists_{A \in \mathcal{A}} A \supset B\right\}$.
It is easy to observe that if \mathcal{A}, \mathcal{B} are σ-ideals, then $(\mathcal{A}+\mathcal{B}) \downarrow$ is also a σ-ideal.
Define

$$
\mathcal{O}:=(\mathcal{K}+\mathcal{S M} \mathcal{Z}) \downarrow
$$

\mathcal{O} is a proper σ-ideal invariant under translations.

$$
\text { Count } \subset \mathcal{O}^{*}
$$

$$
\begin{gathered}
\mathcal{K} \subset \mathcal{O} \quad \Rightarrow \quad \mathcal{O}^{*} \subset \mathcal{K}^{*}=\mathcal{S M Z} \\
\left.\mathcal{S M Z} \subset \mathcal{O} \quad \Rightarrow \quad \mathcal{O}^{*} \subset \mathcal{S} \mathcal{M} \mathcal{Z}^{*}=\mathcal{K} \quad \text { (under } \mathrm{CH}\right) .
\end{gathered}
$$

Therefore, assuming CH ,
Count $\subset \mathcal{O}^{*} \subset \mathcal{K} \cap \mathcal{S M}$ Z.

On the real line

$\mathcal{A}, \mathcal{B} \subset P(\mathbb{R})$
$\mathcal{A}+\mathcal{B}:=\{A+B: A \in \mathcal{A}, B \in \mathcal{B}\}$,
$\mathcal{A} \downarrow:=\left\{B \subset \mathbb{R}: \exists_{A \in \mathcal{A}} A \supset B\right\}$.
It is easy to observe that if \mathcal{A}, \mathcal{B} are σ-ideals, then $(\mathcal{A}+\mathcal{B}) \downarrow$ is also a σ-ideal.
Define

$$
\mathcal{O}:=(\mathcal{K}+\mathcal{S M} \mathcal{Z}) \downarrow
$$

\mathcal{O} is a proper σ-ideal invariant under translations.

$$
\text { Count } \subset \mathcal{O}^{*}
$$

$$
\begin{aligned}
\mathcal{K} \subset \mathcal{O} & \Rightarrow \quad \mathcal{O}^{*} \subset \mathcal{K}^{*}=\mathcal{S M} \mathcal{M} \\
\mathcal{S M Z} \subset \mathcal{O} \quad \Rightarrow \quad \mathcal{O}^{*} \subset \mathcal{S M} \mathcal{Z}^{*} & =\mathcal{K} \quad(\text { under } \mathrm{CH})
\end{aligned}
$$

Therefore, assuming CH ,

$$
\mathcal{C o u n t} \subset \mathcal{O}^{*} \subset \mathcal{K} \cap \mathcal{S} \mathcal{M Z}
$$

On the real line

Let \mathcal{F} be a family of subsets of \mathbb{R}. We say that a set $X, X \subset \mathbb{R}$ is \mathcal{F} - additive if for every set $F \in \mathcal{F}$ the set $X+F$ belongs to \mathcal{F}.

Theorem

The following conditions are equivalent:

- P is $\mathcal{S M Z}$-additive
and the condition
- P is \mathcal{K}-additive (meager-additive)
implies the previous two.
Under CH all three conditions are equivalent.
O. Zindulka, Strong measure zero and meager-additive sets through the prism of fractal measures - submitted

Corollary

\square

On the real line

Let \mathcal{F} be a family of subsets of \mathbb{R}. We say that a set $X, X \subset \mathbb{R}$ is \mathcal{F}-additive if for every set $F \in \mathcal{F}$ the set $X+F$ belongs to \mathcal{F}.

Theorem

The following conditions are equivalent:

- $P \in \mathcal{O}^{*}$,
- P is $\mathcal{S M Z}$-additive

and the condition

- P is \mathcal{K}-additive (meager-additive)
implies the previous two.
Under CH all three conditions are equivalent.

O. Zindulka, Strong measure zero and meager-additive sets through the prism of fractal measures - submitted

Corollary

\mathcal{O}^{*} is a σ-ideal

On the real line

Let \mathcal{F} be a family of subsets of \mathbb{R}. We say that a set $X, X \subset \mathbb{R}$ is \mathcal{F} - additive if for every set $F \in \mathcal{F}$ the set $X+F$ belongs to \mathcal{F}.

Theorem

The following conditions are equivalent:

- $P \in \mathcal{O}^{*}$,
- P is $\mathcal{S M Z}$-additive
and the condition
- P is \mathcal{K}-additive (meager-additive) implies the previous two.
Under CH all three conditions are equivalent.

Corollary

\mathcal{O}^{*} is a σ-ideal.

On the real line

Let \mathcal{F} be a family of subsets of \mathbb{R}. We say that a set $X, X \subset \mathbb{R}$ is \mathcal{F} - additive if for every set $F \in \mathcal{F}$ the set $X+F$ belongs to \mathcal{F}.

Theorem

The following conditions are equivalent:

- $P \in \mathcal{O}^{*}$,
- P is $\mathcal{S M Z}$-additive
and the condition
- P is \mathcal{K}-additive (meager-additive)
implies the previous two.
Under CH all three conditions are equivalent.
O. Zindulka, Strong measure zero and meager-additive sets through the prism of fractal measures - submitted

Corollary

\mathcal{O}^{*} is a σ-ideal.

On the real line

Let \mathcal{F} be a family of subsets of \mathbb{R}. We say that a set $X, X \subset \mathbb{R}$ is \mathcal{F}-additive if for every set $F \in \mathcal{F}$ the set $X+F$ belongs to \mathcal{F}.

Theorem

The following conditions are equivalent:

- $P \in \mathcal{O}^{*}$,
- P is $\mathcal{S M Z}$-additive
and the condition
- P is \mathcal{K}-additive (meager-additive)
implies the previous two.
Under CH all three conditions are equivalent.
O. Zindulka, Strong measure zero and meager-additive sets through the prism of fractal measures - submitted

[^0]\mathcal{O}^{*} is a σ-ideal.

On the real line

Let \mathcal{F} be a family of subsets of \mathbb{R}. We say that a set $X, X \subset \mathbb{R}$ is \mathcal{F}-additive if for every set $F \in \mathcal{F}$ the set $X+F$ belongs to \mathcal{F}.

Theorem

The following conditions are equivalent:

- $P \in \mathcal{O}^{*}$,
- P is $\mathcal{S M Z}$-additive
and the condition
- P is \mathcal{K}-additive (meager-additive)
implies the previous two.
Under CH all three conditions are equivalent.
O. Zindulka, Strong measure zero and meager-additive sets through the prism of fractal measures - submitted

Corollary
\mathcal{O}^{*} is a σ-ideal.

On the real line

T. J. Carlson, Strong measure zero and strongly meager sets, Proc. Amer. Math. Soc., 118(2), 1993

$$
\mathcal{S M}:=\mathcal{N}^{*},
$$

where \mathcal{N} is the σ-ideal of Lebesgue null sets.

Corollary

Assume Cli. If $\mathcal{J} \subset P(\mathbb{R})$ is a continuum generated, translation and reflection invariant proper σ-ideal then

Corollary

Assume CH

The last corollary gives the positive answer to the question 1369 from W. Seredyński, Some operations related to translations, Colloq. Math. 57, 1989

On the real line

T. J. Carlson, Strong measure zero and strongly meager sets, Proc. Amer. Math. Soc., 118(2), 1993

$$
\mathcal{S M}:=\mathcal{N}^{*},
$$

where \mathcal{N} is the σ-ideal of Lebesgue null sets.

Corollary

Assume CH . If $\mathcal{J} \subset P(\mathbb{R})$ is a continuum generated, translation and reflection invariant proper σ-ideal, then

$$
\mathcal{J}^{* *}=\mathcal{J}
$$

Corollary

Assume CH.

$$
\mathcal{N}=\mathcal{S} \mathcal{M}^{*}
$$

The last corollary gives the positive answer to the question 1369 from W. Seredyński, Some operations related to translations, Colloq. Math. 57, 1989

On the real line

T. J. Carlson, Strong measure zero and strongly meager sets, Proc. Amer. Math. Soc., 118(2), 1993

$$
\mathcal{S M}:=\mathcal{N}^{*}
$$

where \mathcal{N} is the σ-ideal of Lebesgue null sets.

Corollary

Assume CH . If $\mathcal{J} \subset P(\mathbb{R})$ is a continuum generated, translation and reflection invariant proper σ-ideal, then

$$
\mathcal{J}^{* *}=\mathcal{J}
$$

Corollary

Assume CH.

$$
\mathcal{N}=\mathcal{S} \mathcal{M}^{*}
$$

The last corollary gives the positive answer to the question 1369 from W. Seredyński, Some operations related to translations, Colloq. Math. 57, 1989

On the real line

T. J. Carlson, Strong measure zero and strongly meager sets, Proc. Amer. Math. Soc., 118(2), 1993

$$
\mathcal{S M}:=\mathcal{N}^{*},
$$

where \mathcal{N} is the σ-ideal of Lebesgue null sets.

Corollary

Assume CH . If $\mathcal{J} \subset P(\mathbb{R})$ is a continuum generated, translation and reflection invariant proper σ-ideal, then

$$
\mathcal{J}^{* *}=\mathcal{J}
$$

Corollary

Assume CH.

$$
\mathcal{N}=\mathcal{S} \mathcal{M}^{*}
$$

The last corollary gives the positive answer to the question 1369 from W. Seredyński, Some operations related to translations, Colloq. Math. 57, 1989.

On the real line

$$
\mathcal{P}:=(\mathcal{N}+\mathcal{S M}) \downarrow
$$

assuming CH ,

$$
\text { Count } \subset \mathcal{P}^{*} \subset \mathcal{N} \cap \mathcal{S M} .
$$

Theorem

The following conditions are equivalent:

- $P \in \mathcal{P}^{*}$,
- P is $\mathcal{S M}$-additive
and the condition
- P is \mathcal{N}-additive (null-additive)
implies the previous two.
Under CH all three conditions are equivalent.

On the real line

$$
\mathcal{P}:=(\mathcal{N}+\mathcal{S M}) \downarrow
$$

assuming CH ,

$$
\mathcal{C} \text { ount } \subset \mathcal{P}^{*} \subset \mathcal{N} \cap \mathcal{S M} .
$$

Theorem

The following conditions are equivalent:

- P is $\mathcal{S M}$-additive

and the condition

- P is \mathcal{N}-additive (null-additive)
implies the previous two.
Under CH all three conditions are equivalent.

On the real line

$$
\mathcal{P}:=(\mathcal{N}+\mathcal{S} \mathcal{M}) \downarrow
$$

assuming CH ,

$$
\mathcal{C o u n t} \subset \mathcal{P}^{*} \subset \mathcal{N} \cap \mathcal{S M}
$$

Theorem

The following conditions are equivalent:

- $P \in \mathcal{P}^{*}$,
- P is $\mathcal{S M}$-additive

and the condition

- P is \mathcal{N}-additive (null-additive)
implies the previous two.
Under CH all three conditions are equivalent.

On the real line

$$
\mathcal{P}:=(\mathcal{N}+\mathcal{S} \mathcal{M}) \downarrow
$$

assuming CH ,

$$
\text { Count } \subset \mathcal{P}^{*} \subset \mathcal{N} \cap \mathcal{S} \mathcal{M}
$$

Theorem

The following conditions are equivalent:

- $P \in \mathcal{P}^{*}$,
- P is $\mathcal{S M}$-additive
and the condition
- P is \mathcal{N}-additive (null-additive)
implies the previous two.
Under CH all three conditions are equivalent.

On the real line

$$
\mathcal{P}:=(\mathcal{N}+\mathcal{S} \mathcal{M}) \downarrow
$$

assuming CH ,

$$
\text { Count } \subset \mathcal{P}^{*} \subset \mathcal{N} \cap \mathcal{S} \mathcal{M}
$$

Theorem

The following conditions are equivalent:

- $P \in \mathcal{P}^{*}$,
- P is $\mathcal{S M}$-additive
and the condition
- P is \mathcal{N}-additive (null-additive)
implies the previous two.
Under CH all three conditions are equivalent.

Thank You for Your kind attention.

[^0]: Corollary

