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On sets which can be moved away from sets of a certain family

General properties of ∗ operation for abelian (topological) groups.

(X ,+) - an abelian group, A,B ⊂ X ,
A+ B := {a+ b : a ∈ A, b ∈ B}, −A := {−a : a ∈ A},
A+ x := A+ {x} for x ∈ X .

De�nition

For F ⊂ P(X ) let

F∗ := {A ⊂ X : ∀F∈F A+ F 6= X}

or equivalently F∗ := {A ⊂ X : ∀F∈F ∃x∈X (x − A) ∩ F = ∅}.

F∗ := {A ⊂ X : ∀F∈F F−A 6= X} = {A ⊂ X : ∀F∈F ∃x∈X (A+x)∩F = ∅}

If we consider a family F which is re�ection invariant then F∗ = F∗.

J. Pawlikowski, M. Sabok, Two Stars, Arch. Math. Logic 47, 2008.
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General properties of ∗ operation for abelian (topological) groups.

F∗ := {A ⊂ X : ∀F∈F A+ F 6= X}

We write F∗∗ := (F∗)∗ and F∗(n+1) := (F∗(n))∗ for n  2.

Proposition

Let F ,G be arbitrary nonempty families of subsets of X . Then

G ⊂ F∗ ⇔ F ⊂ G∗,
F ⊂ F∗∗,
G ⊂ F ⇒ F∗ ⊂ G∗,
F∗ is closed under taking subsets and it is translation invariant,

F∗(n+2) = F∗(n) for n  1.
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On sets which can be moved away from sets of a certain family

General properties of ∗ operation for abelian (topological) groups.

F∗ := {A ⊂ X : ∀F∈F A+ F 6= X}

We write F∗∗ := (F∗)∗ and F∗(n+1) := (F∗(n))∗ for n  2.

Proposition

Let F ,G be arbitrary nonempty families of subsets of X . Then

G ⊂ F∗ ⇔ F ⊂ G∗,
F ⊂ F∗∗,
G ⊂ F ⇒ F∗ ⊂ G∗,
F∗ is closed under taking subsets and it is translation invariant,

F∗(n+2) = F∗(n) for n  1.

J. Pawlikowski, M. Sabok, Two Stars, Arch. Math. Logic 47, 2008.



On sets which can be moved away from sets of a certain family

General properties of ∗ operation for abelian (topological) groups.

F∗ := {A ⊂ X : ∀F∈F A+ F 6= X}

We write F∗∗ := (F∗)∗ and F∗(n+1) := (F∗(n))∗ for n  2.

Proposition

Let F ,G be arbitrary nonempty families of subsets of X . Then

G ⊂ F∗ ⇔ F ⊂ G∗,
F ⊂ F∗∗,
G ⊂ F ⇒ F∗ ⊂ G∗,
F∗ is closed under taking subsets and it is translation invariant,

F∗(n+2) = F∗(n) for n  1.

J. Pawlikowski, M. Sabok, Two Stars, Arch. Math. Logic 47, 2008.



On sets which can be moved away from sets of a certain family

General properties of ∗ operation for abelian (topological) groups.

F∗ := {A ⊂ X : ∀F∈F A+ F 6= X}

We write F∗∗ := (F∗)∗ and F∗(n+1) := (F∗(n))∗ for n  2.

Proposition

Let F ,G be arbitrary nonempty families of subsets of X . Then

G ⊂ F∗ ⇔ F ⊂ G∗,
F ⊂ F∗∗,
G ⊂ F ⇒ F∗ ⊂ G∗,
F∗ is closed under taking subsets and it is translation invariant,

F∗(n+2) = F∗(n) for n  1.

J. Pawlikowski, M. Sabok, Two Stars, Arch. Math. Logic 47, 2008.



On sets which can be moved away from sets of a certain family

General properties of ∗ operation for abelian (topological) groups.

F∗ := {A ⊂ X : ∀F∈F A+ F 6= X}

We write F∗∗ := (F∗)∗ and F∗(n+1) := (F∗(n))∗ for n  2.

Proposition

Let F ,G be arbitrary nonempty families of subsets of X . Then

G ⊂ F∗ ⇔ F ⊂ G∗,
F ⊂ F∗∗,
G ⊂ F ⇒ F∗ ⊂ G∗,
F∗ is closed under taking subsets and it is translation invariant,

F∗(n+2) = F∗(n) for n  1.

J. Pawlikowski, M. Sabok, Two Stars, Arch. Math. Logic 47, 2008.



On sets which can be moved away from sets of a certain family

General properties of ∗ operation for abelian (topological) groups.

F∗ := {A ⊂ X : ∀F∈F A+ F 6= X}

We write F∗∗ := (F∗)∗ and F∗(n+1) := (F∗(n))∗ for n  2.

Proposition

Let F ,G be arbitrary nonempty families of subsets of X . Then

G ⊂ F∗ ⇔ F ⊂ G∗,
F ⊂ F∗∗,
G ⊂ F ⇒ F∗ ⊂ G∗,
F∗ is closed under taking subsets and it is translation invariant,

F∗(n+2) = F∗(n) for n  1.

J. Pawlikowski, M. Sabok, Two Stars, Arch. Math. Logic 47, 2008.



On sets which can be moved away from sets of a certain family

General properties of ∗ operation for abelian (topological) groups.

F∗ := {A ⊂ X : ∀F∈F A+ F 6= X}

Theorem

For any F ⊂ P(X ) the following conditions are equivalent:

∀A/∈F (F ∪ {A})∗ 6= F∗,

F∗∗ = F .

Corollary

For any F ⊂ P(X ) the family F∗∗ is a maximal element (with respect to
inclusion) of the set {G ⊂ P(X ) : G∗ = F∗}.
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General properties of ∗ operation for abelian (topological) groups.

Theorem

F in∗ is the union of all proper, translation invariant ideals of

subsets of X .

Theorem

Count∗ is the union of all proper, translation invariant σ-ideals of
subsets of X .

For X = R the unit interval [0, 1] is an example of a set belonging

to F in∗ but not to Count∗.
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On sets which can be moved away from sets of a certain family

On the real line

K - the σ-ideal of all meager sets,
SMZ - the σ-ideal of all strong measure zero sets.

A set E ⊂ R is of strong measure zero if for each sequence of positive reals
{εn}n∈N there exists a sequence of intervals {In}n∈N such that

E ⊂
⋃
n∈N

In and m(In) ¬ εn for n ∈ N.

Galvin F., Mycielski J., Solovay R. M., Strong measure zero sets, Notices Am.
Math. Soc. 26(3), 1979, Abstract A-280

K∗ = SMZ.

It works also for a σ-compact metrizable group.
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On the real line

Galvin F., Mycielski J., Solovay R. M., Strong measure zero sets, Notices Am. Math. Soc. 26(3), 1979.

K∗ = SMZ.
Borel E., Sur la classi�cation des ensembles de mesure nulle, Bull. Soc. Math. France, 47, 1919.

The Borel Conjecture (BC): SMZ = Count.
Lusin N., Théorie des fonctions, CRAS Paris (1958) 1914.

Under CH: SMZ \ Count 6= ∅.
Laver R., On the consistency of the Borel Conjecture, Acta Math. 137 (3-4), 1976.

In Laver's model: K∗ = Count.

In ZFC: K ⊂ SMZ∗ ⊂ Count∗.

K 6= Count∗.

We will show under CH
K = SMZ∗.
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On sets which can be moved away from sets of a certain family

On the real line

De�nition

We say that an ideal J ⊂ P(X ) is continuum generated if there

exists a family F ⊂ J of subets of X with cardF = c such that for

every set I ∈ J there exists a set F ∈ F covering I (I ⊂ F ).

Theorem

Assume CH. If J ⊂ P(R) is a continuum generated, translation

and re�ection invariant proper σ-ideal, and A /∈ J , then

(J ∪ {A})∗ ( J ∗.

The proof here repeats reasoning from
T. Weiss, Properties of the intersection idealM∩N revisited, Bulletin

Polish Acad. Sci. Math. 65, 2017

with slight modi�cations.
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and re�ection invariant proper σ-ideal, then
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On sets which can be moved away from sets of a certain family

On the real line

A,B ⊂ P(R)
A+ B := {A+ B : A ∈ A,B ∈ B},
A ↓:= {B ⊂ R : ∃A∈A A ⊃ B}.
It is easy to observe that if A,B are σ-ideals, then (A+ B) ↓ is also a σ-ideal.

De�ne
O := (K + SMZ) ↓ .

O is a proper σ-ideal invariant under translations.

Count ⊂ O∗.

K ⊂ O ⇒ O∗ ⊂ K∗ = SMZ.
SMZ ⊂ O ⇒ O∗ ⊂ SMZ∗ = K (under CH).

Therefore, assuming CH,

Count ⊂ O∗ ⊂ K ∩ SMZ.
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On sets which can be moved away from sets of a certain family

On the real line

Let F be a family of subsets of R. We say that a set X , X ⊂ R is F- additive
if for every set F ∈ F the set X + F belongs to F .

Theorem

The following conditions are equivalent:

P ∈ O∗,
P is SMZ-additive

and the condition

P is K-additive (meager-additive)

implies the previous two.
Under CH all three conditions are equivalent.

O. Zindulka, Strong measure zero and meager-additive sets through the prism

of fractal measures - submitted

Corollary

O∗ is a σ-ideal.
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T. J. Carlson, Strong measure zero and strongly meager sets, Proc. Amer. Math. Soc., 118(2), 1993

SM := N ∗,
where N is the σ-ideal of Lebesgue null sets.

Corollary

Assume CH. If J ⊂ P(R) is a continuum generated, translation and re�ection invariant proper σ-ideal,
then

J ∗∗ = J .

Corollary

Assume CH.
N = SM∗.

The last corollary gives the positive answer to the question 1369 from

W. Seredy«ski, Some operations related to translations, Colloq. Math. 57, 1989.
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P := (N + SM) ↓
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Count ⊂ P∗ ⊂ N ∩ SM.

Theorem

The following conditions are equivalent:

P ∈ P∗,

P is SM-additive

and the condition

P is N -additive (null-additive)

implies the previous two.
Under CH all three conditions are equivalent.
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Thank You for Your kind attention.


