Ideal convergent subseries and rearrangements of series in Banach spaces

Marek Balcerzak, Łódź University of Technology

UMI-SIMAI-PTM Joint Meeting, Wrocław, September 17-20, 2018

results obtained together with Michał Popławski and Artur Wachowicz

Marek Balcerzak, Łódź University of Technology Ideal convergent subseries and rearrangements of series in Banac

Theorem (Talagrand; Jalali-Naini)

An ideal \mathcal{I} on \mathbb{N} has the Baire property \Leftrightarrow there exists a sequence $n_1 < n_2 < \ldots$ of natural indices such that no member of \mathcal{I} contains infinitely many intervals $I_k := [n_k, n_{k+1}) \cap \mathbb{N}.$

Consider the following Polish subspaces of the Polish space $\mathbb{N}^{\mathbb{N}}$: $S := \{s \in \mathbb{N}^{\mathbb{N}} : \forall n \in \mathbb{N} \ s(n) < s(n+1)\}$ $P := \{p \in \mathbb{N}^{\mathbb{N}} : p \text{ is a bijection}\}.$ Then S codes subseries of a series, and P codes its rearrangements

Then S codes subseries of a series, and P codes its rearrangements.

Fact 1 [Rao-Rao-Rao]

If a series $\sum x_n$ is divergent (is not absolutely convergent) in \mathbb{R} , then almost all, in the sense of the Baire category, its subseries (rearrangements) are divergent.

Theorem (Talagrand; Jalali-Naini)

An ideal \mathcal{I} on \mathbb{N} has the Baire property \Leftrightarrow there exists a sequence $n_1 < n_2 < \ldots$ of natural indices such that no member of \mathcal{I} contains infinitely many intervals $l_k := [n_k, n_{k+1}) \cap \mathbb{N}.$

Consider the following Polish subspaces of the Polish space $\mathbb{N}^{\mathbb{N}}$: $S := \{ s \in \mathbb{N}^{\mathbb{N}} : \forall n \in \mathbb{N} \ s(n) < s(n+1) \}$ $P := \{ p \in \mathbb{N}^{\mathbb{N}} : p \text{ is a bijection} \}.$ Then S codes subseries of a series, and P codes its rearrangement

Fact 1 [Rao-Rao-Rao]

If a series $\sum x_n$ is divergent (is not absolutely convergent) in \mathbb{R} , then almost all, in the sense of the Baire category, its subseries (rearrangements) are divergent.

Marek Balcerzak, Łódź University of Technology Ideal convergent subseries and rearrangements of series in Banacl

Theorem (Talagrand; Jalali-Naini)

An ideal \mathcal{I} on \mathbb{N} has the Baire property \Leftrightarrow there exists a sequence $n_1 < n_2 < \ldots$ of natural indices such that no member of \mathcal{I} contains infinitely many intervals $I_k := [n_k, n_{k+1}) \cap \mathbb{N}.$

Consider the following Polish subspaces of the Polish space $\mathbb{N}^{\mathbb{N}}$: $S := \{s \in \mathbb{N}^{\mathbb{N}} : \forall n \in \mathbb{N} \ s(n) < s(n+1)\}$ $P := \{p \in \mathbb{N}^{\mathbb{N}} : p \text{ is a bijection}\}.$ Then S codes subseries of a series, and P codes its representation

Then S codes subseries of a series, and P codes its rearrangements.

Fact 1 [Rao-Rao-Rao]

If a series $\sum x_n$ is divergent (is not absolutely convergent) in \mathbb{R} , then almost all, in the sense of the Baire category, its subseries (rearrangements) are divergent.

Theorem (Talagrand; Jalali-Naini)

An ideal \mathcal{I} on \mathbb{N} has the Baire property \Leftrightarrow there exists a sequence $n_1 < n_2 < \ldots$ of natural indices such that no member of \mathcal{I} contains infinitely many intervals $I_k := [n_k, n_{k+1}) \cap \mathbb{N}.$

Consider the following Polish subspaces of the Polish space $\mathbb{N}^{\mathbb{N}}$: $S := \{s \in \mathbb{N}^{\mathbb{N}} : \forall n \in \mathbb{N} \ s(n) < s(n+1)\}$ $P := \{p \in \mathbb{N}^{\mathbb{N}} : p \text{ is a bijection}\}.$

Then S codes subseries of a series, and P codes its rearrangements.

Fact 1 [Rao-Rao-Rao]

If a series $\sum x_n$ is divergent (is not absolutely convergent) in \mathbb{R} , then almost all, in the sense of the Baire category, its subseries (rearrangements) are divergent.

If a series $\sum x_n$ is stat-divergent in \mathbb{R} , then almost every, in the sense of category, its subseries is stat-divergent.

Definition

Let \mathcal{I} be an ideal on \mathbb{N} . A sequence (a_n) in a normed space X is called \mathcal{I} -convergent to $a \in X$, if $\{n \in \mathbb{N} : ||a_n - a|| > \varepsilon\} \in \mathcal{I}$ for every $\varepsilon > 0$. [Fin-convergence is the usual convergence].

Remark: Every \mathcal{I} -convergent sequence is \mathcal{I} -bounded, i.e. $\{n \in \mathbb{N} : ||a_n|| > M\} \in \mathcal{I}$ for some M > 0.

Example

For any set $A \subset \mathbb{N}$, define $d(A) := \lim_{n \to \infty} \frac{|A \cap \{1, \dots, n\}|}{n}$. Then \mathcal{I} -convergence generated by the ideal $\mathcal{I}_d := \{A \subset \mathbb{N} : d(A) = 0\}$ is called statistical convergence.

< ロ > < 同 > < 回 > < 回 > < □ > <

If a series $\sum x_n$ is stat-divergent in \mathbb{R} , then almost every, in the sense of category, its subseries is stat-divergent.

Definition

Let \mathcal{I} be an ideal on \mathbb{N} . A sequence (a_n) in a normed space X is called \mathcal{I} -convergent to $a \in X$, if $\{n \in \mathbb{N} : ||a_n - a|| > \varepsilon\} \in \mathcal{I}$ for every $\varepsilon > 0$. [Fin-convergence is the usual convergence].

Remark: Every \mathcal{I} -convergent sequence is \mathcal{I} -bounded, i.e. $\{n \in \mathbb{N} : ||a_n|| > M\} \in \mathcal{I}$ for some M > 0.

Example

For any set $A \subset \mathbb{N}$, define $d(A) := \lim_{n \to \infty} \frac{|A \cap \{1, \dots, n\}|}{n}$. Then \mathcal{I} -convergence generated by the ideal $\mathcal{I}_d := \{A \subset \mathbb{N} : d(A) = 0\}$ is called statistical convergence.

ヘロト 人間 ト ヘヨト ヘヨト

If a series $\sum x_n$ is stat-divergent in \mathbb{R} , then almost every, in the sense of category, its subseries is stat-divergent.

Definition

Let \mathcal{I} be an ideal on \mathbb{N} . A sequence (a_n) in a normed space X is called \mathcal{I} -convergent to $a \in X$, if $\{n \in \mathbb{N} : ||a_n - a|| > \varepsilon\} \in \mathcal{I}$ for every $\varepsilon > 0$. [Fin-convergence is the usual convergence].

Remark: Every \mathcal{I} -convergent sequence is \mathcal{I} -bounded, i.e. $\{n \in \mathbb{N} : ||a_n|| > M\} \in \mathcal{I}$ for some M > 0.

Example

For any set $A \subset \mathbb{N}$, define $d(A) := \lim_{n \to \infty} \frac{|A \cap \{1, \dots, n\}|}{n}$. Then \mathcal{I} -convergence generated by the ideal $\mathcal{I}_d := \{A \subset \mathbb{N} : d(A) = 0\}$ is called statistical convergence.

・ロト ・ 四 ト ・ 回 ト ・

If a series $\sum x_n$ is stat-divergent in \mathbb{R} , then almost every, in the sense of category, its subseries is stat-divergent.

Definition

Let \mathcal{I} be an ideal on \mathbb{N} . A sequence (a_n) in a normed space X is called \mathcal{I} -convergent to $a \in X$, if $\{n \in \mathbb{N} : ||a_n - a|| > \varepsilon\} \in \mathcal{I}$ for every $\varepsilon > 0$. [Fin-convergence is the usual convergence].

Remark: Every \mathcal{I} -convergent sequence is \mathcal{I} -bounded, i.e. $\{n \in \mathbb{N} : ||a_n|| > M\} \in \mathcal{I}$ for some M > 0.

Example

For any set $A \subset \mathbb{N}$, define $d(A) := \lim_{n \to \infty} \frac{|A \cap \{1, \dots, n\}|}{n}$. Then \mathcal{I} -convergence generated by the ideal $\mathcal{I}_d := \{A \subset \mathbb{N} : d(A) = 0\}$ is called statistical convergence.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Our aim was to generalize Facts 1 and 2 as far as possible. • We consider a series ∑ x_n that is not unconditionally convergent in a Banach space.

• We consider an ideal \mathcal{I} on \mathbb{N} with the Baire property.

- We study the Baire category of the sets
- $A := \{s \in S \colon \sum x_{s(n)} \text{ is } \mathcal{I}\text{-convergent}\} \text{ and }$
- $B := \{p \in P \colon \sum x_{p(n)} \text{ is } \mathcal{I}\text{-convergent}\} \text{ in } S \text{ and } P, \text{ respectively.}$

Theorem 1 [BPW1]

Assume that a series $\sum x_n$ is not unconditionally convergent in the Banach space X.

Assume that an ideal ${\mathcal I}$ with the Baire property on ${\mathbb N}$ is 1-shift invariant.

Then the sets A and B are meager in S and P, respectively.

Our aim was to generalize Facts 1 and 2 as far as possible.

- We consider a series ∑x_n that is not unconditionally convergent in a Banach space.
- We consider an ideal \mathcal{I} on \mathbb{N} with the Baire property.
- We study the Baire category of the sets
- ${\mathcal A}:=\{s\in {\mathcal S}\colon \sum x_{s(n)} ext{ is } {\mathcal I} ext{-convergent}\}$ and
- $B := \{p \in P \colon \sum x_{p(n)} \text{ is } \mathcal{I}\text{-convergent}\} \text{ in } S \text{ and } P, \text{ respectively.}$

Theorem 1 [BPW1]

Assume that a series $\sum x_n$ is not unconditionally convergent in the Banach space X.

Assume that an ideal ${\mathcal I}$ with the Baire property on ${\mathbb N}$ is 1-shift invariant.

Then the sets A and B are meager in S and P, respectively

Our aim was to generalize Facts 1 and 2 as far as possible.

- We consider a series $\sum x_n$ that is not unconditionally convergent in a Banach space.
- We consider an ideal $\mathcal I$ on $\mathbb N$ with the Baire property.
- We study the Baire category of the sets
- $A := \{s \in S \colon \sum x_{s(n)} \text{ is } \mathcal{I}\text{-convergent}\}$ and
- $B := \{p \in P \colon \sum x_{p(n)} \text{ is } \mathcal{I}\text{-convergent}\} \text{ in } S \text{ and } P, \text{ respectively.}$

Theorem 1 [BPW1]

Assume that a series $\sum x_n$ is not unconditionally convergent in the Banach space X.

Assume that an ideal ${\mathcal I}$ with the Baire property on ${\mathbb N}$ is 1-shift invariant.

Then the sets A and B are meager in S and P, respectively.

Our aim was to generalize Facts 1 and 2 as far as possible.

- We consider a series $\sum x_n$ that is not unconditionally convergent in a Banach space.
- We consider an ideal \mathcal{I} on \mathbb{N} with the Baire property.
- We study the Baire category of the sets $A := \{s \in S : \sum x_{s(n)} \text{ is } \mathcal{I}\text{-convergent}\}$ and $B := \{p \in P : \sum x_{p(n)} \text{ is } \mathcal{I}\text{-convergent}\}$ in S and P, respectively.

Theorem 1 [BPW1]

Assume that a series $\sum x_n$ is not unconditionally convergent in the Banach space X.

Assume that an ideal ${\mathcal I}$ with the Baire property on ${\mathbb N}$ is 1-shift invariant.

Then the sets A and B are meager in S and P, respectively

イロト イヨト イヨト

Our aim was to generalize Facts 1 and 2 as far as possible.

- We consider a series $\sum x_n$ that is not unconditionally convergent in a Banach space.
- We consider an ideal \mathcal{I} on \mathbb{N} with the Baire property.
- We study the Baire category of the sets

 $A := \{s \in S : \sum_{x_{s(n)}} x_{s(n)} \text{ is } \mathcal{I}\text{-convergent}\} \text{ and }$

 $B:=\{p\in P\colon \sum x_{p(n)} ext{ is } \mathcal{I} ext{-convergent}\} ext{ in } S ext{ and } P, ext{ respectively.}$

Theorem 1 [BPW1]

Assume that a series $\sum x_n$ is not unconditionally convergent in the Banach space X.

Assume that an ideal ${\mathcal I}$ with the Baire property on ${\mathbb N}$ is 1-shift invariant.

Then the sets A and B are meager in S and P, respectively

イロト イヨト イヨト

Our aim was to generalize Facts 1 and 2 as far as possible.

- We consider a series $\sum x_n$ that is not unconditionally convergent in a Banach space.
- We consider an ideal \mathcal{I} on \mathbb{N} with the Baire property.
- We study the Baire category of the sets $A := \{s \in S : \sum x_{s(n)} \text{ is } \mathcal{I} \text{-convergent}\} \text{ and } P$
- $B := \{p \in P \colon \sum x_{p(n)} \text{ is } \mathcal{I}\text{-convergent}\} \text{ in } S \text{ and } P, \text{ respectively.}$

Theorem 1 [BPW1]

Assume that a series $\sum x_n$ is not unconditionally convergent in the Banach space X.

Assume that an ideal ${\mathcal I}$ with the Baire property on ${\mathbb N}$ is 1-shift invariant.

Then the sets A and B are meager in S and P, respectively.

イロト イヨト イヨト

Our aim was to generalize Facts 1 and 2 as far as possible.

- We consider a series $\sum x_n$ that is not unconditionally convergent in a Banach space.
- We consider an ideal \mathcal{I} on \mathbb{N} with the Baire property.
- We study the Baire category of the sets
- $A := \{s \in S \colon \sum x_{s(n)} \text{ is } \mathcal{I}\text{-convergent}\}$ and
- $B := \{p \in P \colon \sum x_{p(n)} \text{ is } \mathcal{I}\text{-convergent}\} \text{ in } S \text{ and } P, \text{ respectively.}$

Theorem 1 [BPW1]

Assume that a series $\sum x_n$ is not unconditionally convergent in the Banach space X.

Assume that an ideal \mathcal{I} with the Baire property on \mathbb{N} is 1-shift invariant.

Then the sets A and B are meager in S and P, respectively.

イロト イポト イラト イラト

Definition [Leonov]

An ideal \mathcal{I} on \mathbb{N} is called 1-shift invariant, if $(\forall A \subset \mathbb{N}) A \in \mathcal{I} \Rightarrow \mathbb{N} \setminus (A+1) \notin \mathcal{I}$. **Remark:** This is weaker than the shift-invariance of \mathcal{I} $(\forall A \subset \mathbb{N}) A \in \mathcal{I} \Rightarrow (A+1) \in \mathcal{I}$.

Theorem [Leonov]

Let \mathcal{I} be an ideal \mathcal{I} on \mathbb{N} . For any \mathcal{I} -convergent series $\sum x_n$ in a normed space X, the condition $\liminf_n ||x_n|| = 0$ holds \Leftrightarrow the ideal \mathcal{I} is 1-shift invariant.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Definition [Leonov]

An ideal \mathcal{I} on \mathbb{N} is called 1-shift invariant, if $(\forall A \subset \mathbb{N}) A \in \mathcal{I} \Rightarrow \mathbb{N} \setminus (A+1) \notin \mathcal{I}$. **Remark:** This is weaker than the shift-invariance of \mathcal{I} : $(\forall A \subset \mathbb{N}) A \in \mathcal{I} \Rightarrow (A+1) \in \mathcal{I}$.

Theorem [Leonov]

Let \mathcal{I} be an ideal \mathcal{I} on \mathbb{N} . For any \mathcal{I} -convergent series $\sum x_n$ in a normed space X, the condition $\liminf_n ||x_n|| = 0$ holds \Leftrightarrow the ideal \mathcal{I} is 1-shift invariant.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Definition [Leonov]

An ideal \mathcal{I} on \mathbb{N} is called 1-shift invariant, if $(\forall A \subset \mathbb{N}) A \in \mathcal{I} \Rightarrow \mathbb{N} \setminus (A+1) \notin \mathcal{I}$. **Remark:** This is weaker than the shift-invariance of \mathcal{I} : $(\forall A \subset \mathbb{N}) A \in \mathcal{I} \Rightarrow (A+1) \in \mathcal{I}$.

Theorem [Leonov]

Let \mathcal{I} be an ideal \mathcal{I} on \mathbb{N} .

For any \mathcal{I} -convergent series $\sum x_n$ in a normed space X, the condition $\liminf_n ||x_n|| = 0$ holds \Leftrightarrow the ideal \mathcal{I} is 1-shift invariant.

(4月) (日) (日) 日

• We may assume that $\liminf_n ||x_n|| = 0$ since, if $\liminf_n ||x_n|| > 0$, • We use the characterization due to Orlicz: A series $\sum y_n$ is

$$\exists \varepsilon > \mathsf{0} \ \forall m \in \mathbb{N} \ \exists t_m > m$$

$$\left\|\sum_{m=1}^{t_m} x_{u(i)}\right\| > 2\varepsilon.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

-

Marek Balcerzak, Łódź University of Technology Ideal convergent subseries and rearrangements of series in Banac

• We may assume that $\liminf_{n \in \mathbb{N}} ||x_n|| = 0$ since, if $\liminf_{n \in \mathbb{N}} ||x_n|| > 0$, then $A = \emptyset$ and the assertion holds.

Indeed, suppose that there exists $s \in A$. Then $\sum_n x_{s(n)}$ is \mathcal{I} -convergent. Since \mathcal{I} is 1-shift invariant, by the Leonov theorem, we have $\liminf_n ||x_{s(n)}|| = 0$. A contradiction.

• We use the characterization due to Orlicz: A series $\sum y_n$ is unconditionally convergent in a Banach space \Leftrightarrow every subseries $\sum_n y_{s(n)}$, $s \in S$, is convergent.

In our case, $\sum_{n} x_{n}$ is not unconditionally convergent. Hence pick $u \in S$ such that $\sum_{n} x_{u(n)}$ is divergent, so the Cauchy condition does not hold. That is,

$$\exists \varepsilon > 0 \; \forall m \in \mathbb{N} \; \exists t_m > m$$

$$\left\|\sum_{m+1}^{t_m} x_{u(i)}\right\| > 2\varepsilon.$$

< ロ > < 同 > < 三 > < 三 >

-

• We may assume that $\liminf_{n \to \infty} ||x_n|| = 0$ since, if $\liminf_{n \to \infty} ||x_n|| > 0$, then $A = \emptyset$ and the assertion holds. Indeed, suppose that there exists $s \in A$. Then $\sum_{n} x_{s(n)}$ is \mathcal{I} -convergent. Since \mathcal{I} is 1-shift invariant, by the Leonov theorem, we have $\liminf_{n \in S(n)} ||x_{s(n)}|| = 0$. A contradiction. • We use the characterization due to Orlicz: A series $\sum y_n$ is

 $\exists \varepsilon > 0 \ \forall m \in \mathbb{N} \ \exists t_m > n$

$$\left\|\sum_{m+1}^{t_m} x_{u(i)}\right\| > 2\varepsilon.$$

< ロ > < 同 > < 三 > < 三 >

-

Marek Balcerzak, Łódź University of Technology Ideal convergent subseries and rearrangements of series in Banac

Proof of Theorem 1 (for the set \overline{A} ; sketch).

• We may assume that $\liminf_{n \in \mathbb{N}} ||x_n|| = 0$ since, if $\liminf_{n \in \mathbb{N}} ||x_n|| > 0$, then $A = \emptyset$ and the assertion holds.

Indeed, suppose that there exists $s \in A$. Then $\sum_n x_{s(n)}$ is \mathcal{I} -convergent. Since \mathcal{I} is 1-shift invariant, by the Leonov theorem, we have $\liminf_n ||x_{s(n)}|| = 0$. A contradiction.

• We use the characterization due to Orlicz: A series $\sum y_n$ is unconditionally convergent in a Banach space \Leftrightarrow every subseries $\sum_n y_{s(n)}$, $s \in S$, is convergent.

In our case, $\sum_{n} x_{n}$ is not unconditionally convergent. Hence pick $u \in S$ such that $\sum_{n} x_{u(n)}$ is divergent, so the Cauchy condition does not hold. That is,

$$\exists \varepsilon > 0 \ \forall m \in \mathbb{N} \ \exists t_m > n$$

$$\left|\sum_{m+1}^{t_m} x_{u(i)}\right| > 2\varepsilon.$$

イロト イポト イヨト イヨト

-

• We may assume that $\liminf_n ||x_n|| = 0$ since, if $\liminf_n ||x_n|| > 0$, then $A = \emptyset$ and the assertion holds.

Indeed, suppose that there exists $s \in A$. Then $\sum_{n} x_{s(n)}$ is \mathcal{I} -convergent. Since \mathcal{I} is 1-shift invariant, by the Leonov theorem, we have $\liminf_n ||x_{s(n)}|| = 0$. A contradiction.

• We use the characterization due to Orlicz: A series $\sum y_n$ is unconditionally convergent in a Banach space \Leftrightarrow every subseries $\sum_{n} y_{s(n)}, s \in S$, is convergent.

In our case, $\sum_{n} x_{n}$ is not unconditionally convergent. Hence pick $u \in S$ such that $\sum_n x_{u(n)}$ is divergent, so the Cauchy condition does not hold. That is,

$$\exists \varepsilon > 0 \ \forall m \in \mathbb{N} \ \exists t_m > m \ \left\| \sum_{m+1}^{t_m} x_{u(i)} \right\| > 2\varepsilon.$$

くロ と く 同 と く ヨ と 一 Ideal convergent subseries and rearrangements of series in Banac

-

• We have $s \in A \Leftrightarrow \sum_n x_{s(n)}$ is \mathcal{I} -convergent \Leftrightarrow (Dems: *I*-Cauchy condition) $\forall \eta > 0 \; \exists m \in \mathbb{N} \; \{j > m \colon \|\sum_{i=m+1}^{j} x_{\mathfrak{s}(i)}\| > \eta\} \in \mathcal{I}.$ • Hence $A = \bigcap_{n>0} \bigcup_{m \in \mathbb{N}} A_{nm}$ where • Then we show that every set $A_{\in m}$, $m \in \mathbb{N}$, is meager.

伺下 イヨト イヨト

• We have $s \in A \Leftrightarrow \sum_{n} x_{s(n)}$ is \mathcal{I} -convergent \Leftrightarrow (Dems: *I*-Cauchy condition) $\forall \eta > 0 \; \exists m \in \mathbb{N} \; \{j > m \colon \|\sum_{i=m+1}^{j} x_{\mathfrak{s}(i)}\| > \eta\} \in \mathcal{I}.$ • Hence $A = \bigcap_{n>0} \bigcup_{m \in \mathbb{N}} A_{\eta m}$ where $A_{\eta m} := \left\{ s \in S \colon \left\{ j > m \colon \left\| \sum_{i=m+1}^{j} x_{s(i)} \right\| > \eta \right\} \in \mathcal{I} \right\}.$ Thus in particular, $A \subset \bigcup_{m \in \mathbb{N}} A_{\varepsilon m}$ where ε is chosen as above. • Then we show that every set $A_{\varepsilon m}$, $m \in \mathbb{N}$, is meager.

・ 同 ト ・ ヨ ト ・ ヨ ト …

• We have $s \in A \Leftrightarrow \sum_{n} x_{s(n)}$ is \mathcal{I} -convergent \Leftrightarrow (Dems: *I*-Cauchy condition) $\forall \eta > 0 \ \exists m \in \mathbb{N} \ \{j > m \colon \| \sum_{i=m+1}^{j} x_{\mathfrak{s}(i)} \| > \eta\} \in \mathcal{I}.$ • Hence $A = \bigcap_{n>0} \bigcup_{m \in \mathbb{N}} A_{\eta m}$ where $A_{\eta m} := \left\{ s \in S \colon \left\{ j > m \colon \left\| \sum_{i=m+1}^{j} x_{s(i)} \right\| > \eta \right\} \in \mathcal{I} \right\}.$ Thus in particular, $A \subset \bigcup_{m \in \mathbb{N}} A_{\varepsilon m}$ where ε is chosen as above. • Then we show that every set $A_{\varepsilon m}$, $m \in \mathbb{N}$, is meager.

・ 同 ト ・ ヨ ト ・ ヨ ト …

• We have $s \in A \Leftrightarrow \sum_n x_{s(n)}$ is \mathcal{I} -convergent \Leftrightarrow (Dems: *I*-Cauchy condition) $\forall \eta > 0 \; \exists m \in \mathbb{N} \; \{j > m \colon \|\sum_{i=m+1}^{j} x_{\mathfrak{s}(i)}\| > \eta\} \in \mathcal{I}.$ • Hence $A = \bigcap_{n>0} \bigcup_{m \in \mathbb{N}} A_{\eta m}$ where $A_{\eta m} := \left\{ s \in S \colon \left\{ j > m \colon \left\| \sum_{i=m+1}^{j} x_{s(i)} \right\| > \eta \right\} \in \mathcal{I} \right\}.$ Thus in particular, $A \subset \bigcup_{m \in \mathbb{N}} A_{\varepsilon m}$ where ε is chosen as above. • Then we show that every set $A_{\varepsilon m}$, $m \in \mathbb{N}$, is meager. To this aim, we use: the Talagrand characterization, the divergence of $\sum_{n} x_{u(n)}$, and the condition $\liminf_{n} ||x_{n}|| = 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• We have $s \in A \Leftrightarrow \sum_n x_{s(n)}$ is \mathcal{I} -convergent \Leftrightarrow (Dems: *I*-Cauchy condition) $\forall \eta > 0 \; \exists m \in \mathbb{N} \; \{j > m \colon \|\sum_{i=m+1}^{j} x_{\mathfrak{s}(i)}\| > \eta\} \in \mathcal{I}.$ • Hence $A = \bigcap_{n>0} \bigcup_{m \in \mathbb{N}} A_{\eta m}$ where $A_{\eta m} := \left\{ s \in S \colon \left\{ j > m \colon \left\| \sum_{i=m+1}^{j} x_{s(i)} \right\| > \eta \right\} \in \mathcal{I} \right\}.$ Thus in particular, $A \subset \bigcup_{m \in \mathbb{N}} A_{\varepsilon m}$ where ε is chosen as above. • Then we show that every set $A_{\varepsilon m}$, $m \in \mathbb{N}$, is meager. To this aim, we use: the Talagrand characterization, the divergence of $\sum_{n} x_{\mu(n)}$, and the condition $\liminf_{n} ||x_{n}|| = 0$. The proof for B is similar. \Box

Remarks

If dim(X) = ∞, there exists an unconditionally convergent series in X, which is not absolutely convergent [Dvoretzky-Rogers]. For such a series, we have A = S and B = P. Hence Theorem 1 is not valid where the lack of unconditional convergence is replaced by the lack of absolute convergence.
If dim(X) < ∞, the unconditional convergence of a series is equivalent to its absolute convergence.

Marek Balcerzak, Łódź University of Technology Ideal convergent subseries and rearrangements of series in Banacl

伺 ト イヨ ト イヨト

Remarks

• If $dim(X) = \infty$, there exists an unconditionally convergent series in X, which is not absolutely convergent [Dvoretzky-Rogers]. For such a series, we have A = S and B = P. Hence Theorem 1 is not valid where the lack of unconditional convergence is replaced by the lack of absolute convergence.

• If $dim(X) < \infty$, the unconditional convergence of a series is equivalent to its absolute convergence.

伺 ト イヨト イヨト

Remarks

• If $dim(X) = \infty$, there exists an unconditionally convergent series in X, which is not absolutely convergent [Dvoretzky-Rogers]. For such a series, we have A = S and B = P. Hence Theorem 1 is not valid where the lack of unconditional convergence is replaced by the lack of absolute convergence.

• If $dim(X) < \infty$, the unconditional convergence of a series is equivalent to its absolute convergence.

Theorem 2

Assume that a series $\sum x_n$ is not absolutely convergent in \mathbb{R} . Assume that an ideal \mathcal{I} on \mathbb{N} has the Baire property. Then the following sets $E := \{s \in S : (\sum_{i=1}^{n} x_{s(i)})_{n \in \mathbb{N}} \text{ is } \mathcal{I}\text{-bounded}\};$ $F := \{p \in P : (\sum_{i=1}^{n} x_{p(i)})_{n \in \mathbb{N}} \text{ is } \mathcal{I}\text{-bounded}\}$ are meager in S and P, respectively.

Note that $A \subset E$ and $B \subset F$. We do not assume that an ideal \mathcal{I} is 1-shift invariant.

The scheme of the proof of Theorem 2 is similar to that used for Theorem 1. We apply the alternative

 $\sum_{x_n > 0} x_n = \infty \text{ or } \sum_{x_n \leqslant 0} = -\infty$ which follows from the assumption $\sum_n |x_n| = \infty$.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Theorem 2

Assume that a series $\sum x_n$ is not absolutely convergent in \mathbb{R} . Assume that an ideal \mathcal{I} on \mathbb{N} has the Baire property. Then the following sets $E := \{s \in S : (\sum_{i=1}^{n} x_{s(i)})_{n \in \mathbb{N}} \text{ is } \mathcal{I}\text{-bounded}\};$ $F := \{p \in P : (\sum_{i=1}^{n} x_{p(i)})_{n \in \mathbb{N}} \text{ is } \mathcal{I}\text{-bounded}\}$ are meager in S and P, respectively.

Note that $A \subset E$ and $B \subset F$. We do not assume that an ideal \mathcal{I} is 1-shift invariant.

The scheme of the proof of Theorem 2 is similar to that used for Theorem 1. We apply the alternative

 $\sum_{x_n > 0} x_n = \infty \text{ or } \sum_{x_n \leqslant 0} = -\infty$ which follows from the assumption $\sum_n |x_n| = \infty$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem 2

Assume that a series $\sum x_n$ is not absolutely convergent in \mathbb{R} . Assume that an ideal \mathcal{I} on \mathbb{N} has the Baire property. Then the following sets $E := \{s \in S : (\sum_{i=1}^{n} x_{s(i)})_{n \in \mathbb{N}} \text{ is } \mathcal{I}\text{-bounded}\};$ $F := \{p \in P : (\sum_{i=1}^{n} x_{p(i)})_{n \in \mathbb{N}} \text{ is } \mathcal{I}\text{-bounded}\}$ are meager in S and P, respectively.

Note that $A \subset E$ and $B \subset F$. We do not assume that an ideal \mathcal{I} is 1-shift invariant.

The scheme of the proof of Theorem 2 is similar to that used for Theorem 1. We apply the alternative

 $\sum_{x_n > 0} x_n = \infty \text{ or } \sum_{x_n \leqslant 0} = -\infty$ which follows from the assumption $\sum_n |x_n| = \infty$.

(日本) (日本) (日本)

Theorem 2

Assume that a series $\sum x_n$ is not absolutely convergent in \mathbb{R} . Assume that an ideal \mathcal{I} on \mathbb{N} has the Baire property. Then the following sets $E := \{s \in S : (\sum_{i=1}^{n} x_{s(i)})_{n \in \mathbb{N}} \text{ is } \mathcal{I}\text{-bounded}\};$ $F := \{p \in P : (\sum_{i=1}^{n} x_{p(i)})_{n \in \mathbb{N}} \text{ is } \mathcal{I}\text{-bounded}\}$ are meager in S and P, respectively.

Note that $A \subset E$ and $B \subset F$. We do not assume that an ideal \mathcal{I} is 1-shift invariant.

The scheme of the proof of Theorem 2 is similar to that used for Theorem 1. We apply the alternative

 $\sum_{x_n > 0} x_n = \infty \text{ or } \sum_{x_n \leqslant 0} = -\infty$ which follows from the assumption $\sum_n |x_n| = \infty$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Subseries can be coded in a different way, by the use of the set

 $T := \{t \in \{0,1\}^{\mathbb{N}} : t(n) = 1 \text{ for infinitely many } n's\}$

which is a Polish subspace of $\{0, 1\}^{\mathbb{N}}$. Then $\sum_{n} t(n)x_n$ for $t = (t(n)) \in T$ is a subseries of a series $\sum_{n} x_n$.

We observed that for some ideals \mathcal{I} the methods of coding of subseries by the sets S and \mathcal{T} produce different classes of \mathcal{I} -convergent subseries. [For $\mathcal{I} :=$ Fin they are the same.]

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Subseries can be coded in a different way, by the use of the set

 $T := \{t \in \{0,1\}^{\mathbb{N}} : t(n) = 1 \text{ for infinitely many } n's\}$

which is a Polish subspace of $\{0,1\}^{\mathbb{N}}$. Then $\sum_n t(n)x_n$ for $t = (t(n)) \in T$ is a subseries of a series $\sum_n x_n$. We observed that for some ideals \mathcal{I} the methods of coding of subseries by the sets S and T produce different classes of

 \mathcal{I} -convergent subseries. [For $\mathcal{I} :=$ Fin they are the same.]

周 ト イ ヨ ト イ ヨ ト ニ ヨ

Under the approach with the set T, the assertion of Theorem 1 for subseries remains true without assumption about 1-shift invariance of \mathcal{I} .

Theorem 1' [BPW2]

Assume that a series $\sum_{n} x_{n}$ is not unconditionally convergent in the Banach space X. If \mathcal{I} is an ideal with the Baire property, then the set

$$A^* := \left\{ t \in \mathcal{T} : \sum_n t(n) x_n \text{ is } \mathcal{I}\text{-convergent} \right\}$$

is meager in T.

Remark: The set T is co-countable in $\{0,1\}^N$, so we can consider the whole space $\{0,1\}^N$ instead of T, treating a series $\sum_n t(n)x_n$ with $t \notin T$ as convergent.

(日本) (日本) (日本)

Under the approach with the set T, the assertion of Theorem 1 for subseries remains true without assumption about 1-shift invariance of \mathcal{I} .

Theorem 1' [BPW2]

Assume that a series $\sum_{n} x_{n}$ is not unconditionally convergent in the Banach space X. If \mathcal{I} is an ideal with the Baire property, then the set

$$A^* := \left\{ t \in \mathcal{T} : \sum_n t(n) x_n \text{ is } \mathcal{I}\text{-convergent} \right\}$$

is meager in T.

Remark: The set T is co-countable in $\{0,1\}^N$, so we can consider the whole space $\{0,1\}^{\mathbb{N}}$ instead of T, treating a series $\sum_n t(n)x_n$ with $t \notin T$ as convergent.

Let $\nu(\{0\}) = 1/2 = \nu(\{1\})$, and consider the product measure λ on $\{0,1\}^{\mathbb{N}}$ generated by ν (the Haar measure on $\{0,1\}^{\mathbb{N}}$).

Given an ideal \mathcal{I} on \mathbb{N} , and an \mathcal{I} -divergent series $\sum_n x_n$ in a Banach space X, let us consider its subseries. One can ask: • Is the set $A(\mathcal{I}) := \{t \in \{0,1\}^{\mathbb{N}} : \sum_n t(n)x_n \text{ is } \mathcal{I}\text{-convergent}\}$ measurable?

• What is the value $\lambda(A(\mathcal{I}))$?

For $\mathcal{I} :=$ Fin, and $\mathcal{I} := \mathcal{I}_d, X := \mathbb{R}$, we have $\lambda(A(\mathcal{I})) = 0$ [Dindoš, Šalát et als].

We will generalize these results.

• A D + A D + A

Let $\nu(\{0\}) = 1/2 = \nu(\{1\})$, and consider the product measure λ on $\{0,1\}^{\mathbb{N}}$ generated by ν (the Haar measure on $\{0,1\}^{\mathbb{N}}$).

Given an ideal \mathcal{I} on \mathbb{N} , and an \mathcal{I} -divergent series $\sum_n x_n$ in a Banach space X, let us consider its subseries. One can ask: • Is the set $A(\mathcal{I}) := \{t \in \{0,1\}^{\mathbb{N}} : \sum_n t(n)x_n \text{ is } \mathcal{I}\text{-convergent}\}$ measurable?

• What is the value $\lambda(A(\mathcal{I}))$?

For $\mathcal{I} :=$ Fin, and $\mathcal{I} := \mathcal{I}_d, X := \mathbb{R}$, we have $\lambda(A(\mathcal{I})) = 0$ [Dindoš, Šalát et als].

We will generalize these results.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let $\nu(\{0\}) = 1/2 = \nu(\{1\})$, and consider the product measure λ on $\{0,1\}^{\mathbb{N}}$ generated by ν (the Haar measure on $\{0,1\}^{\mathbb{N}}$).

Given an ideal \mathcal{I} on \mathbb{N} , and an \mathcal{I} -divergent series $\sum_n x_n$ in a Banach space X, let us consider its subseries. One can ask:

- Is the set $A(\mathcal{I}) := \{t \in \{0,1\}^{\mathbb{N}} : \sum_{n} t(n)x_n \text{ is } \mathcal{I}\text{-convergent}\}$ measurable?
- What is the value $\lambda(A(\mathcal{I}))$?

For $\mathcal{I} := Fin$, and $\mathcal{I} := \mathcal{I}_d, X := \mathbb{R}$, we have $\lambda(\mathcal{A}(\mathcal{I})) = 0$ [Dindoš, Šalát et als].

We will generalize these results.

・ 「「」、 ・ 」、 ・ 」、 う

Let $\nu(\{0\}) = 1/2 = \nu(\{1\})$, and consider the product measure λ on $\{0,1\}^{\mathbb{N}}$ generated by ν (the Haar measure on $\{0,1\}^{\mathbb{N}}$).

Given an ideal \mathcal{I} on \mathbb{N} , and an \mathcal{I} -divergent series $\sum_n x_n$ in a Banach space X, let us consider its subseries. One can ask:

- Is the set $A(\mathcal{I}) := \{t \in \{0,1\}^{\mathbb{N}} : \sum_{n} t(n) x_n \text{ is } \mathcal{I}\text{-convergent}\}$ measurable?
- What is the value $\lambda(A(\mathcal{I}))$?

For $\mathcal{I} :=$ Fin, and $\mathcal{I} := \mathcal{I}_d, X := \mathbb{R}$, we have $\lambda(\mathcal{A}(\mathcal{I})) = 0$ [Dindoš, Šalát et als].

We will generalize these results.

周 ト イ ヨ ト イ ヨ ト 二 ヨ

Let $\nu(\{0\}) = 1/2 = \nu(\{1\})$, and consider the product measure λ on $\{0,1\}^{\mathbb{N}}$ generated by ν (the Haar measure on $\{0,1\}^{\mathbb{N}}$).

Given an ideal \mathcal{I} on \mathbb{N} , and an \mathcal{I} -divergent series $\sum_n x_n$ in a Banach space X, let us consider its subseries. One can ask:

- Is the set $A(\mathcal{I}) := \{t \in \{0,1\}^{\mathbb{N}} : \sum_{n} t(n)x_n \text{ is } \mathcal{I}\text{-convergent}\}$ measurable?
- What is the value $\lambda(A(\mathcal{I}))$?

For $\mathcal{I} :=$ Fin, and $\mathcal{I} := \mathcal{I}_d, X := \mathbb{R}$, we have $\lambda(\mathcal{A}(\mathcal{I})) = 0$ [Dindoš, Šalát et als].

We will generalize these results.

周 ト イ ヨ ト イ ヨ ト ニ ヨ

Theorem 3

Let \mathcal{I} be an ideal on \mathbb{N} which is analytic or coanalytic. Let $\sum_n x_n$ be a series in a Banach space. Then $\lambda(\mathcal{A}(\mathcal{I}))$ is either 0 or 1. If $\sum_n x_n$ is \mathcal{I} -divergent, then $\lambda(\mathcal{A}(\mathcal{I})) = 0$.

In the proof, we use 0-1 law for measure.

Dindoš, Šalát and Toma proved that for $\mathcal{I} := \mathcal{I}_d$, the second assertion of is not valid if we replace \mathcal{I} -divergence of $\sum_n x_n$ by its divergence.

They gave an example of a divergent series with such that $\lambda(A(Fin)) = 0$ while as $\lambda(A(\mathcal{I}_d)) = 1$.

We will use a similar method to obtain the same effect for a wide class of ideals.

< 同 ト < 三 ト < 三 ト

Theorem 3

Let \mathcal{I} be an ideal on \mathbb{N} which is analytic or coanalytic. Let $\sum_n x_n$ be a series in a Banach space. Then $\lambda(\mathcal{A}(\mathcal{I}))$ is either 0 or 1. If $\sum_n x_n$ is \mathcal{I} -divergent, then $\lambda(\mathcal{A}(\mathcal{I})) = 0$.

In the proof, we use 0-1 law for measure.

Dindoš, Šalát and Toma proved that for $\mathcal{I} := \mathcal{I}_d$, the second assertion of is not valid if we replace \mathcal{I} -divergence of $\sum_n x_n$ by its divergence.

They gave an example of a divergent series with such that $\lambda(A(Fin)) = 0$ while as $\lambda(A(\mathcal{I}_d)) = 1$.

We will use a similar method to obtain the same effect for a wide class of ideals.

Theorem 3

Let \mathcal{I} be an ideal on \mathbb{N} which is analytic or coanalytic. Let $\sum_n x_n$ be a series in a Banach space. Then $\lambda(\mathcal{A}(\mathcal{I}))$ is either 0 or 1. If $\sum_n x_n$ is \mathcal{I} -divergent, then $\lambda(\mathcal{A}(\mathcal{I})) = 0$.

In the proof, we use 0-1 law for measure.

Dindoš, Šalát and Toma proved that for $\mathcal{I} := \mathcal{I}_d$, the second assertion of is not valid if we replace \mathcal{I} -divergence of $\sum_n x_n$ by its divergence.

They gave an example of a divergent series with such that $\lambda(A(Fin)) = 0$ while as $\lambda(A(\mathcal{I}_d)) = 1$.

We will use a similar method to obtain the same effect for a wide class of ideals.

Definition

We say that an ideal \mathcal{I} has the property of long intervals if, there exists a sequence $(m(n)) \in \mathbb{N}^{\mathbb{N}}$ such that

$$\bigcup_{n\in\mathbb{N}} \{m(n), m(n)+1, \ldots, m(n)+n-1\} \in \mathcal{I}.$$

Note that Leonov introduced the property of long intervals for the dual filter, under the name the unbounded gap property. It can be shown that every dense P-ideal has PLI.

Theorem 4

Assume that \mathcal{I} is an ideal with the property of long intervals. Then there exists a divergent series $\sum_n x_n$ in \mathbb{R} , with $x_n \neq 0$, for which $\lambda(A(\mathcal{I})) = 1$. Consequently, $\lambda(A(\operatorname{Fin})) = 0 < 1 = \lambda(A(\mathcal{I}))$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Definition

We say that an ideal \mathcal{I} has the property of long intervals if, there exists a sequence $(m(n)) \in \mathbb{N}^{\mathbb{N}}$ such that

$$\bigcup_{n\in\mathbb{N}} \{m(n), m(n)+1, \ldots, m(n)+n-1\} \in \mathcal{I}.$$

Note that Leonov introduced the property of long intervals for the dual filter, under the name the unbounded gap property. It can be shown that every dense P-ideal has PLI.

Theorem 4

Assume that \mathcal{I} is an ideal with the property of long intervals. Then there exists a divergent series $\sum_n x_n$ in \mathbb{R} , with $x_n \neq 0$, for which $\lambda(\mathcal{A}(\mathcal{I})) = 1$. Consequently, $\lambda(\mathcal{A}(\operatorname{Fin})) = 0 < 1 = \lambda(\mathcal{A}(\mathcal{I}))$.

- 4 目 ト 4 日 ト

Definition

We say that an ideal \mathcal{I} has the property of long intervals if, there exists a sequence $(m(n)) \in \mathbb{N}^{\mathbb{N}}$ such that

$$\bigcup_{n\in\mathbb{N}} \{m(n), m(n)+1, \ldots, m(n)+n-1\} \in \mathcal{I}.$$

Note that Leonov introduced the property of long intervals for the dual filter, under the name the unbounded gap property. It can be shown that every dense P-ideal has PLI.

Theorem 4

Assume that \mathcal{I} is an ideal with the property of long intervals. Then there exists a divergent series $\sum_n x_n$ in \mathbb{R} , with $x_n \neq 0$, for which $\lambda(\mathcal{A}(\mathcal{I})) = 1$. Consequently, $\lambda(\mathcal{A}(\operatorname{Fin})) = 0 < 1 = \lambda(\mathcal{A}(\mathcal{I}))$.

Final remark

Assume that a series $\sum x_n$ with terms in a Banach space is divergent (or is not unconditionally convergent). Given a rasonable ideal \mathcal{I} on \mathbb{N} (e.g. analytic or coanalytic), we have not considered rearangements of the series from the measure viewpoint. Namely, we have not studied the measure size of the set $B := \left\{ p \in P \colon \sum x_{p(n)} \text{ is } \mathcal{I}\text{-convergent} \right\}.$

The reason is that there is no Haar measure on the non-locally compact group $P = S_{\infty}$.

However, we can ask whether *B* is Haar null, that is whether there is a Borel probability measure μ on *P* such that $\mu(pBq) = 0$ for any $p, q \in P$. This is an open problem.

Final remark

Assume that a series $\sum x_n$ with terms in a Banach space is divergent (or is not unconditionally convergent). Given a rasonable ideal \mathcal{I} on \mathbb{N} (e.g. analytic or coanalytic), we have not considered rearangements of the series from the measure viewpoint. Namely, we have not studied the measure size of the set $B := \left\{ p \in P \colon \sum x_{p(n)} \text{ is } \mathcal{I}\text{-convergent} \right\}.$

The reason is that there is no Haar measure on the non-locally compact group $P = S_{\infty}$. However, we can ask whether *B* is Haar null, that is whether there is a Borel probability measure μ on *P* such that $\mu(pBq) = 0$ for any $p, q \in P$. This is an open problem.

References

- M. Balcerzak, M. Popławski, A. Wachowicz, The Baire category of ideal convergent subseries and rearrangements, Topology Appl. 231 (2017), 219–230.
- M. Balcerzak, M. Popławski, A. Wachowicz, *Ideal convergent subseries in Banach spaces*, Quaest. Math. 2018.
- M. Dindoš, T. Šalát, V. Toma, *Statistical convergence of infinite series*, Czechoslovak Math. J. **53** (2003), 989–1000.
- A. Leonov, On the coincidence of the limit point range and the sum range along a filter of filter convergent series, Visn. Khark. Univ. Ser. Math. Prykl. Mat. Mekh. 826 (2008), 134–140.
- M. Bhaskara Rao, K.P.S. Bhaskara Rao, B.V. Rao, *Remarks on subsequences, subseries and rearrangements*, Proc. Amer. Math. Soc. **67** (1977), 293–296.

< ロ > < 同 > < 三 > < 三 > <

-

THANKS FOR YOUR ATTENTION!

Marek Balcerzak, Łódź University of Technology Ideal convergent subseries and rearrangements of series in Banac

▶ ∢ ⊒ ▶