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We will consider proper ideals of subsets of N, containing Fin, the
family of finite sets. An ideal I ⊂ P(N) can be treated as a subset
of the Cantor space {0, 1}N (via a bijection P(N) ∼ {0, 1}N.)

Theorem (Talagrand; Jalali-Naini)

An ideal I on N has the Baire property
⇔ there exists a sequence n1 < n2 < . . . of natural indices such
that no member of I contains infinitely many intervals
Ik := [nk , nk+1) ∩ N.

Consider the following Polish subspaces of the Polish space NN:
S := {s ∈ NN : ∀n ∈ N s(n) < s(n + 1)}
P := {p ∈ NN : p is a bijection}.
Then S codes subseries of a series, and P codes its rearrangements.

Fact 1 [Rao-Rao-Rao]

If a series
∑

xn is divergent (is not absolutely convergent) in R,
then almost all, in the sense of the Baire category, its subseries
(rearrangements) are divergent.
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Fact 2 [Dindos, Šalát, Toma]

If a series
∑

xn is stat-divergent in R, then almost every, in the
sense of category, its subseries is stat-divergent.

Definition

Let I be an ideal on N. A sequence (an) in a normed space X is
called I-convergent to a ∈ X , if {n ∈ N : ||an − a|| > ε} ∈ I for
every ε > 0. [Fin-convergence is the usual convergence].

Remark: Every I-convergent sequence is I-bounded, i.e.
{n ∈ N : ||an|| > M} ∈ I for some M > 0.

Example

For any set A ⊂ N, define
d(A) := limn→∞

|A∩{1,...,n}|
n .

Then I-convergence generated by the ideal
Id := {A ⊂ N : d(A) = 0} is called statistical convergence.
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The I-convergence of a series means the I-convergence of the
sequence of its partial sums.

Our aim was to generalize Facts 1 and 2 as far as possible.
• We consider a series

∑
xn that is not unconditionally convergent

in a Banach space.
• We consider an ideal I on N with the Baire property.
• We study the Baire category of the sets
A := {s ∈ S :

∑
xs(n) is I-convergent} and

B := {p ∈ P :
∑

xp(n) is I-convergent} in S and P, respectively.

Theorem 1 [BPW1]

Assume that a series
∑

xn is not unconditionally convergent in the
Banach space X .
Assume that an ideal I with the Baire property on N is 1-shift
invariant.
Then the sets A and B are meager in S and P, respectively.
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Definition [Leonov]

An ideal I on N is called 1-shift invariant, if
(∀A ⊂ N) A ∈ I ⇒ N \ (A+ 1) /∈ I.
Remark: This is weaker than the shift-invariance of I:
(∀A ⊂ N) A ∈ I ⇒ (A+ 1) ∈ I.

Theorem [Leonov]

Let I be an ideal I on N.
For any I-convergent series

∑
xn in a normed space X , the

condition lim infn ||xn|| = 0 holds ⇔ the ideal I is 1-shift invariant.
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Proof of Theorem 1 (for the set A; sketch).

• We may assume that lim infn ||xn|| = 0 since, if lim infn ||xn|| > 0,
then A = ∅ and the assertion holds.
Indeed, suppose that there exists s ∈ A. Then

∑
n xs(n) is

I-convergent. Since I is 1-shift invariant, by the Leonov theorem,
we have lim infn ||xs(n)|| = 0. A contradiction.
• We use the characterization due to Orlicz: A series

∑
yn is

unconditionally convergent in a Banach space ⇔ every subseries∑
n ys(n), s ∈ S , is convergent.

In our case,
∑

n xn is not unconditionally convergent. Hence pick
u ∈ S such that

∑
n xu(n) is divergent, so the Cauchy condition

does not hold. That is,

∃ε > 0 ∀m ∈ N ∃tm > m

∥∥∥∥∥∥
tm∑

m+1

xu(i)

∥∥∥∥∥∥ > 2ε.
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Proof (continued).

• We have s ∈ A⇔
∑

n xs(n) is I-convergent⇔
(Dems: I-Cauchy condition)
∀η > 0 ∃m ∈ N {j > m : ‖

∑j
i=m+1 xs(i)‖ > η} ∈ I.

• Hence A =
⋂
η>0

⋃
m∈N Aηm where

Aηm :=
{
s ∈ S :

{
j > m :

∥∥∥∑j
i=m+1 xs(i)

∥∥∥ > η
}
∈ I

}
.

Thus in particular, A ⊂
⋃

m∈N Aεm where ε is chosen as above.
• Then we show that every set Aεm, m ∈ N, is meager.
To this aim, we use: the Talagrand characterization,
the divergence of

∑
n xu(n), and the condition lim infn ||xn|| = 0.

The proof for B is similar. �
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Remarks

• If dim(X ) =∞, there exists an unconditionally convergent series
in X , which is not absolutely convergent [Dvoretzky-Rogers].
For such a series, we have A = S and B = P.
Hence Theorem 1 is not valid where the lack of unconditional
convergence is replaced by the lack of absolute convergence.

• If dim(X ) <∞, the unconditional convergence of a series is
equivalent to its absolute convergence.
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For dim(X ) <∞, we have a stronger result. It can be stated for
X = R.

Theorem 2

Assume that a series
∑

xn is not absolutely convergent in R.
Assume that an ideal I on N has the Baire property.
Then the following sets
E := {s ∈ S : (

∑n
i=1 xs(i))n∈N is I-bounded};

F := {p ∈ P : (
∑n

i=1 xp(i))n∈N is I-bounded}
are meager in S and P, respectively.

Note that A ⊂ E and B ⊂ F . We do not assume that an ideal I is
1-shift invariant.
The scheme of the proof of Theorem 2 is similar to that used for
Theorem 1. We apply the alternative∑

xn>0 xn =∞ or
∑

xn¬0 = −∞
which follows from the assumption

∑
n |xn| =∞.
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Subseries can be coded in a different way, by the use of the set

T := {t ∈ {0, 1}N : t(n) = 1 for infinitely many n′s}

which is a Polish subspace of {0, 1}N.
Then

∑
n t(n)xn for t = (t(n)) ∈ T is a subseries of a series

∑
n xn.

We observed that for some ideals I the methods of coding of
subseries by the sets S and T produce different classes of
I-convergent subseries. [For I := Fin they are the same.]
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Under the approach with the set T , the assertion of Theorem 1 for
subseries remains true without assumption about 1-shift invariance
of I.

Theorem 1’ [BPW2]

Assume that a series
∑

n xn is not unconditionally convergent in
the Banach space X .
If I is an ideal with the Baire property, then the set

A∗ :=

{
t ∈ T :

∑
n

t(n)xn is I-convergent

}

is meager in T .

Remark: The set T is co-countable in {0, 1}N , so we can consider
the whole space {0, 1}N instead of T , treating a series

∑
n t(n)xn

with t /∈ T as convergent.
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Measure case

Let ν({0}) = 1/2 = ν({1}), and consider the product measure λ
on {0, 1}N generated by ν (the Haar measure on {0, 1}N).

Given an ideal I on N, and an I-divergent series
∑

n xn in a
Banach space X , let us consider its subseries. One can ask:
• Is the set A(I) := {t ∈ {0, 1}N :

∑
n t(n)xn is I-convergent}

measurable?
• What is the value λ(A(I))?

For I := Fin, and I := Id ,X := R, we have λ(A(I)) = 0 [Dindoš,
Šalát et als].

We will generalize these results.

Marek Balcerzak, Łódź University of Technology Ideal convergent subseries and rearrangements of series in Banach spaces



Measure case

Let ν({0}) = 1/2 = ν({1}), and consider the product measure λ
on {0, 1}N generated by ν (the Haar measure on {0, 1}N).

Given an ideal I on N, and an I-divergent series
∑

n xn in a
Banach space X , let us consider its subseries. One can ask:
• Is the set A(I) := {t ∈ {0, 1}N :

∑
n t(n)xn is I-convergent}

measurable?
• What is the value λ(A(I))?

For I := Fin, and I := Id ,X := R, we have λ(A(I)) = 0 [Dindoš,
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Šalát et als].

We will generalize these results.

Marek Balcerzak, Łódź University of Technology Ideal convergent subseries and rearrangements of series in Banach spaces



Measure case

Let ν({0}) = 1/2 = ν({1}), and consider the product measure λ
on {0, 1}N generated by ν (the Haar measure on {0, 1}N).

Given an ideal I on N, and an I-divergent series
∑

n xn in a
Banach space X , let us consider its subseries. One can ask:
• Is the set A(I) := {t ∈ {0, 1}N :

∑
n t(n)xn is I-convergent}

measurable?
• What is the value λ(A(I))?

For I := Fin, and I := Id ,X := R, we have λ(A(I)) = 0 [Dindoš,
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Theorem 3

Let I be an ideal on N which is analytic or coanalytic. Let
∑

n xn
be a series in a Banach space. Then λ(A(I)) is either 0 or 1. If∑

n xn is I-divergent, then λ(A(I)) = 0.

In the proof, we use 0-1 law for measure.

Dindoš, Šalát and Toma proved that for I := Id , the second
assertion of is not valid if we replace I-divergence of

∑
n xn by its

divergence.
They gave an example of a divergent series with such that
λ(A(Fin)) = 0 while as λ(A(Id)) = 1.
We will use a similar method to obtain the same effect for a wide
class of ideals.
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Definition

We say that an ideal I has the property of long intervals if, there
exists a sequence (m(n)) ∈ NN such that⋃

n∈N
{m(n),m(n) + 1, . . . ,m(n) + n − 1} ∈ I.

Note that Leonov introduced the property of long intervals for the
dual filter, under the name the unbounded gap property. It can be
shown that every dense P-ideal has PLI.

Theorem 4

Assume that I is an ideal with the property of long intervals. Then
there exists a divergent series

∑
n xn in R, with xn 6→ 0, for which

λ(A(I)) = 1. Consequently, λ(A(Fin)) = 0 < 1 = λ(A(I)).
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Final remark

Assume that a series
∑

xn with terms in a Banach space is
divergent (or is not unconditionally convergent).
Given a rasonable ideal I on N (e.g. analytic or coanalytic), we
have not considered rearangements of the series from the measure
viewpoint. Namely, we have not studied the measure size of the set
B :=

{
p ∈ P :

∑
xp(n) is I-convergent

}
.

The reason is that there is no Haar measure on the non-locally
compact group P = S∞.
However, we can ask whether B is Haar null, that is whether there
is a Borel probability measure µ on P such that µ(pBq) = 0 for
any p, q ∈ P. This is an open problem.
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