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Luzin-type sets
Luzin set:
X is uncountable and |X ∩M| = ℵ0 for every meager M

The existence of a Luzin set is independent of ZFC

cov(M): min cardinality of a family of meager sets that covers R
cof(M): min cardinality of a cofinal family of meager sets in R

cov(M)-Luzin set:
|X | ≥ cov(M) and |X ∩M| < cov(M) for every meager M

(cov(M) = cof(M)) There is a cov(M)-Luzin set:

Let {Mα : α < cov(M) } be a cofinal family of meager sets
At step α < cov(M) pick

xα ∈ R \
( ⋃
β≤α

Mβ ∪ { xβ : β < α }
)

{ xα : α < cov(M) } is a cov(M)-Luzin set
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Luzin-type sets

Theorem (Just, Miller, Scheepers, Szeptycki (cov(M) = c))

There is a cov(M)-Luzin set L such that Ln is S1(O,O) for all n.

ω-cover: X /∈ O and for every finite F ⊆ X there is O ∈ O with F ⊆ O

S1(Ω,Ω): for every sequence O1,O2, . . . of open ω-covers of X there are
sets O1 ∈ O1,O2 ∈ O2, . . . such that {On : n ∈ N } is an ω-cover

Sakai: X n is S1(O,O) for all n ⇔ X is S1(Ω,Ω)

A topological proof, no chance to weaken assumptions with a
similar construction.

cov(M) = cof(M) is enough to construct a cov(M)-Luzin set

Goal: find a new construction and improve the theorem
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Combinatorics
The Cantor space: P(N) ≈ {0, 1}N ≈ Cantor set ⊆ R

P(N) = Fin ∪ [N]∞

[N]∞ ⊇ U: a nonprincipal ultrafilter

For x , y ∈ [N]∞, x ≤U y if { n : x(n) ≤ y(n) } ∈ U

b(U): minimal cardinality of a ≤U -unbounded set

[N]∞ ⊇ { xα : α < b(U) } is a U-scale if

∀α<β xα ≤U xβ, ∀z∈[N]∞∃α z ≤U xα

Lemma (Sz, Tsaban, Zdomskyy)

Assume that U is an ultrafilter such that b(U) = cov(M).
For a U-scale X the set (X ∪ Fin)n is S1(O,O) for all n.

For every meager M ⊆ [N]∞, there are a set f ∈ [N]∞ and an
interval partition a ∈ [N]∞

M ⊆ { x ∈ [N]∞ : x∩[a(n), a(n+1)) 6= f ∩[a(n), a(n+1)) for all but fin many n }
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Luzin-type sets and combinatorics

Theorem (Sz, Wísniewski (cov(M) = cof(M))

Assume that U is an ultrafilter and b(U) = cov(M).
There is a U-scale that is a cov(M)-Luzin set.

Lemma (Sz, Wísniewski)

Let U be an ultrafilter, d ∈ [N]∞, and {Mβ : β < α } be a family of
meager sets, where α < cov(M).
There is x ∈ [N]∞ such that d ≤U x and x /∈ ⋃β<αMβ.

For β < α, there are fβ, aβ ∈ [N]∞ such that

Mβ = { x ∈ [N]∞ : x ∩ [aβ(n), aβ(n + 1)) 6= fβ ∩ [aβ(n), aβ(n + 1))

for all but finitely many n }
In other words, pick x such that d ≤U x and for each β < α

x ∩ [aβ(n), aβ(n + 1)) = fβ ∩ [aβ(n), aβ(n + 1)) for inf many n
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Theorem (Bartoszyński, Shelah, Tsaban (cov(M) = c))

There are cov(M)-Luzin sets K , L such that

Kn, Ln are S1(O,O) for all n

K × L is not Sfin(O,O)



Products of Luzin-type sets
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Theorem (Sz, Wísniewski (cov(M) = cof(M) + cov(M) is regular))

There are cov(M)-Luzin sets K , L such that

Kn, Ln are S1(O,O) for all n

K × L is not Sfin(O,O)
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it depends
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Theorem (Scheepers, Tsaban (cov(M) = cof(M)))

There is a cov(M)-Luzin set (and thus S1(O,O)) that is no Ufin(O,Ω).
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There is a cov(M)-Luzin set (and thus S1(O,O)) that is no Ufin(O,Ω).
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Applications to functions spaces
Cp(X ) := {cont f : X → R} with pointwise convergence topology

How good Cp(X) could be?

Cp(X ) is metrizable (or just first countable) ⇔ X is countable

Countable strong fan tightness: for every sequence A1,A2, . . . and
z ∈ ⋂n An, there are a1 ∈ A1, a2 ∈ A2, . . . such that z ∈ { an : n ∈ N }.
Countable fan tightness: for every sequence A1,A2, . . . and z ∈ ⋂n An,

there are finite F1 ⊆ A1,F2 ⊆ A2, . . . such that z ∈ ⋃n Fn.
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Applications to functions spaces

Theorem (Sakai; Just, Miller, Scheepers, Szeptycki)

Cp(X ) has countable strong fan tightness ⇔ X n is S1(O,O) for all n

Cp(X ) has countable fan tightness ⇔ X n is Sfin(O,O) for all n

Theorem (Sz, Wísniewski (cov(M) = cof(M) + cov(M) is regular))

There are cov(M)-Luzin sets X ,Y such that

X n,Y n are S1(O,O) for all n

X × Y is not Sfin(O,O)

Corollary (cov(M) = cof(M) + cov(M) is regular))

There are cov(M)-Luzin sets X , Y such that

Cp(X ), Cp(Y ) have countable strong fan tightness

Cp(X )× Cp(Y ) does not have countable fan tightness

Cp(X )× Cp(Y ) ≈ Cp(X t Y ), X × Y ⊆ (X t Y )2
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Comments

Theorem (Sz, Wísniewski (cov(M) = cof(M) + cov(M) is regular))

There are cov(M)-Luzin sets X ,Y such that

X n,Y n are S1(O,O) for all n

X × Y is not Sfin(O,O)

Theorem (Scheepers, Tsaban; Sz, Wísniewski (cov(M) = cof(M)))

There is a cov(M)-Luzin set (and thus S1(O,O)) that is no Ufin(O,Ω).
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What about just sets with the above properties?



Comments

Theorem (Sz, Wísniewski (cov(M) = cof(M) + cov(M) is regular))

There are cov(M)-Luzin sets X ,Y such that

X n,Y n are S1(O,O) for all n

X × Y is not Sfin(O,O)

Theorem (Scheepers, Tsaban; Sz, Wísniewski (cov(M) = cof(M)))

There is a cov(M)-Luzin set (and thus S1(O,O)) that is no Ufin(O,Ω).

Theorem (Sz, Tsaban, Zdomskyy (cov(M) = d + d is regular))

There are sets X ,Y such that

X n,Y n are S1(O,O) for all n

X × Y is not Sfin(O,O)

Theorem (Sz, Tsaban, Zdomskyy (cov(M) = d))

There is a set that is S1(O,O) but no Ufin(O,Ω).
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