Products of Luzin-type sets with combinatorial properties

Piotr Szewczak

Cardinal Stefan Wyszyński University in Warsaw, Poland joint work with Grzegorz Wiśniewski

Rothberger's property $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

$\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $X \subseteq \bigcup_{n} O_{n}$

Rothberger's property $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

$\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $X \subseteq \bigcup_{n} O_{n}$

Rothberger's property $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

$\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $X \subseteq \bigcup_{n} O_{n}$

Rothberger's property $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

$\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $X \subseteq \bigcup_{n} O_{n}$

Rothberger's property $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

$\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $X \subseteq \bigcup_{n} O_{n}$

countable \qquad $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

Rothberger's property $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

$\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $X \subseteq \bigcup_{n} O_{n}$

$O_{2} \in \mathcal{O}_{2}$

countable \qquad $\rightarrow \mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

Strong Measure Zero: for every sequence of positive numbers $\epsilon_{1}, \epsilon_{2}, \ldots$ there are intervals I_{1}, I_{2}, \ldots such that $\operatorname{diam}\left(I_{n}\right) \leq \epsilon_{n}$ and $X \subseteq \bigcup_{n} I_{n}$

Rothberger's property $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

$\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $X \subseteq \bigcup_{n} O_{n}$

$O_{2} \in \mathcal{O}_{2}$

-••

countable \qquad $\rightarrow \mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ \qquad

Strong Measure Zero: for every sequence of positive numbers $\epsilon_{1}, \epsilon_{2}, \ldots$ there are intervals I_{1}, I_{2}, \ldots such that $\operatorname{diam}\left(I_{n}\right) \leq \epsilon_{n}$ and $X \subseteq \bigcup_{n} I_{n}$

Rothberger's property $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

$\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $X \subseteq \bigcup_{n} O_{n}$

$O_{1} \in \mathcal{O}_{1}$

$O_{2} \in \mathcal{O}_{2}$

$O_{3} \in \mathcal{O}_{3}$

countable \qquad $\rightarrow \mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ \qquad

Strong Measure Zero: for every sequence of positive numbers $\epsilon_{1}, \epsilon_{2}, \ldots$ there are intervals I_{1}, I_{2}, \ldots such that $\operatorname{diam}\left(I_{n}\right) \leq \epsilon_{n}$ and $X \subseteq \bigcup_{n} I_{n}$

Borel's conjecture: SMZ = countable

Rothberger's property $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

$\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $X \subseteq \bigcup_{n} O_{n}$

-••

- $\mathbb{N}^{\mathbb{N}} \supseteq Y$ is guessable if $\exists_{g \in \mathbb{N}^{\mathbb{N}}} \forall_{y \in Y}\{n: g(n)=y(n)\}$ is infinite

Theorem (Recław)
X is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O}) \Leftrightarrow$ every continuous image of X into $\mathbb{N}^{\mathbb{N}}$ is guessable

Rothberger's property $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

$\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $X \subseteq \bigcup_{n} O_{n}$

$O_{1} \in \mathcal{O}_{1}$

$\mathrm{O}_{2} \in \mathcal{O}_{2}$

$O_{3} \in \mathcal{O}_{3}$

- $\mathbb{N}^{\mathbb{N}} \supseteq Y$ is guessable if $\exists_{g \in \mathbb{N}^{\mathbb{N}}} \forall_{y \in Y}\{n: g(n)=y(n)\}$ is infinite

Theorem (Recław)

X is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O}) \Leftrightarrow$ every continuous image of X into $\mathbb{N}^{\mathbb{N}}$ is guessable

- $\operatorname{cov}(\mathcal{M}):$ minimal cardinality of a nonguessable set
- $|X|<\operatorname{cov}(\mathcal{M}) \Rightarrow X$ is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

Luzin-type sets

Luzin set:
X is uncountable and $|X \cap M|=\aleph_{0}$ for every meager M

Luzin-type sets

Luzin set:
X is uncountable and $|X \cap M|=\aleph_{0}$ for every meager M
The existence of a Luzin set is independent of ZFC

Luzin-type sets

Luzin set:
X is uncountable and $|X \cap M|=\aleph_{0}$ for every meager M
The existence of a Luzin set is independent of ZFC

- $\operatorname{cov}(\mathcal{M}):$ min cardinality of a family of meager sets that covers \mathbb{R}
- $\operatorname{cof}(\mathcal{M}):$ min cardinality of a cofinal family of meager sets in \mathbb{R}
$\operatorname{cov}(\mathcal{M})$-Luzin set:
$|X| \geq \operatorname{cov}(\mathcal{M})$ and $|X \cap M|<\operatorname{cov}(\mathcal{M})$ for every meager M

Luzin-type sets

Luzin set:
X is uncountable and $|X \cap M|=\aleph_{0}$ for every meager M
The existence of a Luzin set is independent of ZFC

- $\operatorname{cov}(\mathcal{M}): m i n c a r d i n a l i t y ~ o f ~ a ~ f a m i l y ~ o f ~ m e a g e r ~ s e t s ~ t h a t ~ c o v e r s ~ \mathbb{R}$
- $\operatorname{cof}(\mathcal{M}):$ min cardinality of a cofinal family of meager sets in \mathbb{R}
$\operatorname{cov}(\mathcal{M})$-Luzin set:
$|X| \geq \operatorname{cov}(\mathcal{M})$ and $|X \cap M|<\operatorname{cov}(\mathcal{M})$ for every meager M
- $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M}))$ There is a $\operatorname{cov}(\mathcal{M})$-Luzin set:

Luzin-type sets

Luzin set:
X is uncountable and $|X \cap M|=\aleph_{0}$ for every meager M
The existence of a Luzin set is independent of ZFC

- $\operatorname{cov}(\mathcal{M})$: min cardinality of a family of meager sets that covers \mathbb{R}
- $\operatorname{cof}(\mathcal{M}):$ min cardinality of a cofinal family of meager sets in \mathbb{R}
$\operatorname{cov}(\mathcal{M})$-Luzin set:
$|X| \geq \operatorname{cov}(\mathcal{M})$ and $|X \cap M|<\operatorname{cov}(\mathcal{M})$ for every meager M
- $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M}))$ There is a $\operatorname{cov}(\mathcal{M})$-Luzin set:
- Let $\left\{M_{\alpha}: \alpha<\operatorname{cov}(\mathcal{M})\right\}$ be a cofinal family of meager sets

Luzin-type sets

Luzin set:
X is uncountable and $|X \cap M|=\aleph_{0}$ for every meager M
The existence of a Luzin set is independent of ZFC

- $\operatorname{cov}(\mathcal{M}): m i n c a r d i n a l i t y ~ o f ~ a ~ f a m i l y ~ o f ~ m e a g e r ~ s e t s ~ t h a t ~ c o v e r s ~ \mathbb{R}$
- $\operatorname{cof}(\mathcal{M}):$ min cardinality of a cofinal family of meager sets in \mathbb{R}
$\operatorname{cov}(\mathcal{M})$-Luzin set:
$|X| \geq \operatorname{cov}(\mathcal{M})$ and $|X \cap M|<\operatorname{cov}(\mathcal{M})$ for every meager M
- $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M}))$ There is a $\operatorname{cov}(\mathcal{M})$-Luzin set:
- Let $\left\{M_{\alpha}: \alpha<\operatorname{cov}(\mathcal{M})\right\}$ be a cofinal family of meager sets
- At step $\alpha<\operatorname{cov}(\mathcal{M})$ pick

$$
x_{\alpha} \in \mathbb{R} \backslash\left(\bigcup_{\beta \leq \alpha} M_{\beta} \cup\left\{x_{\beta}: \beta<\alpha\right\}\right)
$$

Luzin-type sets

Luzin set:
X is uncountable and $|X \cap M|=\aleph_{0}$ for every meager M
The existence of a Luzin set is independent of ZFC

- $\operatorname{cov}(\mathcal{M}): m i n c a r d i n a l i t y ~ o f ~ a ~ f a m i l y ~ o f ~ m e a g e r ~ s e t s ~ t h a t ~ c o v e r s ~ \mathbb{R}$
- $\operatorname{cof}(\mathcal{M}):$ min cardinality of a cofinal family of meager sets in \mathbb{R}
$\operatorname{cov}(\mathcal{M})$-Luzin set:
$|X| \geq \operatorname{cov}(\mathcal{M})$ and $|X \cap M|<\operatorname{cov}(\mathcal{M})$ for every meager M
- $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M}))$ There is a $\operatorname{cov}(\mathcal{M})$-Luzin set:
- Let $\left\{M_{\alpha}: \alpha<\operatorname{cov}(\mathcal{M})\right\}$ be a cofinal family of meager sets
- At step $\alpha<\operatorname{cov}(\mathcal{M})$ pick

$$
x_{\alpha} \in \mathbb{R} \backslash\left(\bigcup_{\beta \leq \alpha} M_{\beta} \cup\left\{x_{\beta}: \beta<\alpha\right\}\right)
$$

- $\left\{x_{\alpha}: \alpha<\operatorname{cov}(\mathcal{M})\right\}$ is $\operatorname{acov}(\mathcal{M})$-Luzin set

Luzin-type sets

$\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $X \subseteq \bigcup_{n} O_{n}$

$$
|X|<\operatorname{cov}(\mathcal{M}) \Rightarrow X \text { is } \mathrm{S}_{1}(\mathcal{O}, \mathcal{O})
$$

$\operatorname{cov}(\mathcal{M})$-Luzin set:
$|X| \geq \operatorname{cov}(\mathcal{M})$ and $|X \cap M|<\operatorname{cov}(\mathcal{M})$ for every meager M

Luzin-type sets

$\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $X \subseteq \bigcup_{n} O_{n}$

$$
|X|<\operatorname{cov}(\mathcal{M}) \Rightarrow X \text { is } \mathrm{S}_{1}(\mathcal{O}, \mathcal{O})
$$

$\operatorname{cov}(\mathcal{M})$-Luzin set:
$|X| \geq \operatorname{cov}(\mathcal{M})$ and $|X \cap M|<\operatorname{cov}(\mathcal{M})$ for every meager M

Observation
 $A \operatorname{cov}(\mathcal{M})$-Luzin set is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

Luzin-type sets

$\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $X \subseteq \bigcup_{n} O_{n}$

$$
|X|<\operatorname{cov}(\mathcal{M}) \Rightarrow X \text { is } \mathrm{S}_{1}(\mathcal{O}, \mathcal{O})
$$

$\operatorname{cov}(\mathcal{M})$-Luzin set:
$|X| \geq \operatorname{cov}(\mathcal{M})$ and $|X \cap M|<\operatorname{cov}(\mathcal{M})$ for every meager M

Observation
 $A \operatorname{cov}(\mathcal{M})$-Luzin set is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

- Assume that $\mathbb{Q} \subseteq X$

Luzin-type sets

$\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $X \subseteq \bigcup_{n} O_{n}$

$$
|X|<\operatorname{cov}(\mathcal{M}) \Rightarrow X \text { is } \mathrm{S}_{1}(\mathcal{O}, \mathcal{O})
$$

$\operatorname{cov}(\mathcal{M})$-Luzin set:
$|X| \geq \operatorname{cov}(\mathcal{M})$ and $|X \cap M|<\operatorname{cov}(\mathcal{M})$ for every meager M

Observation

$A \operatorname{cov}(\mathcal{M})$-Luzin set is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

$$
\mathcal{O}_{1}, \quad \mathcal{O}_{2}, \quad \mathcal{O}_{3}, \quad \mathcal{O}_{4}, \ldots
$$

- Assume that $\mathbb{Q} \subseteq X$

Luzin-type sets

$\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $X \subseteq \bigcup_{n} O_{n}$

$$
|X|<\operatorname{cov}(\mathcal{M}) \Rightarrow X \text { is } \mathrm{S}_{1}(\mathcal{O}, \mathcal{O})
$$

$\operatorname{cov}(\mathcal{M})$-Luzin set:
$|X| \geq \operatorname{cov}(\mathcal{M})$ and $|X \cap M|<\operatorname{cov}(\mathcal{M})$ for every meager M

Observation

$A \operatorname{cov}(\mathcal{M})$-Luzin set is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

$$
O_{1} \in \mathcal{O}_{1}, \quad \mathcal{O}_{2}, O_{3} \in \mathcal{O}_{3}, \quad \mathcal{O}_{4}, \ldots
$$

- Assume that $\mathbb{Q} \subseteq X$
- $\mathbb{Q} \subseteq O:=\bigcup_{n} O_{2 n-1}$

Luzin-type sets

$\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $X \subseteq \bigcup_{n} O_{n}$

$$
|X|<\operatorname{cov}(\mathcal{M}) \Rightarrow X \text { is } \mathrm{S}_{1}(\mathcal{O}, \mathcal{O})
$$

$\operatorname{cov}(\mathcal{M})$-Luzin set:
$|X| \geq \operatorname{cov}(\mathcal{M})$ and $|X \cap M|<\operatorname{cov}(\mathcal{M})$ for every meager M

Observation

$A \operatorname{cov}(\mathcal{M})$-Luzin set is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

$$
O_{1} \in \mathcal{O}_{1}, \quad \mathcal{O}_{2}, O_{3} \in \mathcal{O}_{3}, \quad \mathcal{O}_{4}, \ldots
$$

- Assume that $\mathbb{Q} \subseteq X$
- $\mathbb{Q} \subseteq O:=\bigcup_{n} O_{2 n-1}$
- $X \backslash O$ is meager

Luzin-type sets

$\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $X \subseteq \bigcup_{n} O_{n}$

$$
|X|<\operatorname{cov}(\mathcal{M}) \Rightarrow X \text { is } \mathrm{S}_{1}(\mathcal{O}, \mathcal{O})
$$

$\operatorname{cov}(\mathcal{M})$-Luzin set:
$|X| \geq \operatorname{cov}(\mathcal{M})$ and $|X \cap M|<\operatorname{cov}(\mathcal{M})$ for every meager M

Observation

$A \operatorname{cov}(\mathcal{M})$-Luzin set is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

$$
O_{1} \in \mathcal{O}_{1}, \quad \mathcal{O}_{2}, O_{3} \in \mathcal{O}_{3}, \quad \mathcal{O}_{4}, \ldots
$$

- Assume that $\mathbb{Q} \subseteq X$
- $\mathbb{Q} \subseteq O:=\bigcup_{n} O_{2 n-1}$
- $X \backslash O$ is meager $\Rightarrow|X \backslash O|<\operatorname{cov}(\mathcal{M})$

Luzin-type sets

$\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $X \subseteq \bigcup_{n} O_{n}$

$$
|X|<\operatorname{cov}(\mathcal{M}) \Rightarrow X \text { is } \mathrm{S}_{1}(\mathcal{O}, \mathcal{O})
$$

$\operatorname{cov}(\mathcal{M})$-Luzin set:
$|X| \geq \operatorname{cov}(\mathcal{M})$ and $|X \cap M|<\operatorname{cov}(\mathcal{M})$ for every meager M

Observation

$A \operatorname{cov}(\mathcal{M})$-Luzin set is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

$$
O_{1} \in \mathcal{O}_{1}, \quad \mathcal{O}_{2}, O_{3} \in \mathcal{O}_{3}, \quad \mathcal{O}_{4}, \ldots
$$

- Assume that $\mathbb{Q} \subseteq X$
- $\mathbb{Q} \subseteq O:=\bigcup_{n} O_{2 n-1}$
- $X \backslash O$ is meager $\Rightarrow|X \backslash O|<\operatorname{cov}(\mathcal{M}) \Rightarrow X \backslash O$ is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

Luzin-type sets

$\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $X \subseteq \bigcup_{n} O_{n}$

$$
|X|<\operatorname{cov}(\mathcal{M}) \Rightarrow X \text { is } \mathrm{S}_{1}(\mathcal{O}, \mathcal{O})
$$

$\operatorname{cov}(\mathcal{M})$-Luzin set:
$|X| \geq \operatorname{cov}(\mathcal{M})$ and $|X \cap M|<\operatorname{cov}(\mathcal{M})$ for every meager M

Observation

$A \operatorname{cov}(\mathcal{M})$-Luzin set is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

$$
O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, O_{3} \in \mathcal{O}_{3}, O_{4} \in \mathcal{O}_{4}, \ldots
$$

- Assume that $\mathbb{Q} \subseteq X$
- $\mathbb{Q} \subseteq O:=\bigcup_{n} O_{2 n-1}$
- $X \backslash O$ is meager $\Rightarrow|X \backslash O|<\operatorname{cov}(\mathcal{M}) \Rightarrow X \backslash O$ is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$
- $X \backslash O \subseteq \bigcup_{n} O_{2 n}$

Luzin-type sets

$\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $X \subseteq \bigcup_{n} O_{n}$

$$
|X|<\operatorname{cov}(\mathcal{M}) \Rightarrow X \text { is } \mathrm{S}_{1}(\mathcal{O}, \mathcal{O})
$$

$\operatorname{cov}(\mathcal{M})$-Luzin set:
$|X| \geq \operatorname{cov}(\mathcal{M})$ and $|X \cap M|<\operatorname{cov}(\mathcal{M})$ for every meager M

Observation

$A \operatorname{cov}(\mathcal{M})$-Luzin set is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

$$
O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, O_{3} \in \mathcal{O}_{3}, O_{4} \in \mathcal{O}_{4}, \ldots
$$

- Assume that $\mathbb{Q} \subseteq X$
- $\mathbb{Q} \subseteq O:=\bigcup_{n} O_{2 n-1}$
- $X \backslash O$ is meager $\Rightarrow|X \backslash O|<\operatorname{cov}(\mathcal{M}) \Rightarrow X \backslash O$ is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$
- $X \backslash O \subseteq \bigcup_{n} O_{2 n}$
- $X \subseteq \bigcup_{n} O_{n}$

Luzin-type sets

Theorem (Just, Miller, Scheepers, Szeptycki $(\operatorname{cov}(\mathcal{M})=\mathfrak{c}))$
There is a $\operatorname{cov}(\mathcal{M})$-Luzin set L such that L^{n} is $S_{1}(\mathcal{O}, \mathcal{O})$ for all n.

Luzin-type sets

Theorem (Just, Miller, Scheepers, Szeptycki $(\operatorname{cov}(\mathcal{M})=c))$
There is a $\operatorname{cov}(\mathcal{M})$-Luzin set L such that L^{n} is $S_{1}(\mathcal{O}, \mathcal{O})$ for all n.
ω-cover: $X \notin \mathcal{O}$ and for every finite $F \subseteq X$ there is $O \in \mathcal{O}$ with $F \subseteq O$

Luzin-type sets

Theorem (Just, Miller, Scheepers, Szeptycki $(\operatorname{cov}(\mathcal{M})=\mathfrak{c}))$

There is a $\operatorname{cov}(\mathcal{M})$-Luzin set L such that L^{n} is $S_{1}(\mathcal{O}, \mathcal{O})$ for all n.
ω-cover: $X \notin \mathcal{O}$ and for every finite $F \subseteq X$ there is $O \in \mathcal{O}$ with $F \subseteq O$
$\mathrm{S}_{1}(\Omega, \Omega)$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open ω-covers of X there are sets $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $\left\{O_{n}: n \in \mathbb{N}\right\}$ is an ω-cover

Luzin-type sets

Theorem (Just, Miller, Scheepers, Szeptycki $(\operatorname{cov}(\mathcal{M})=\mathfrak{c}))$

There is a $\operatorname{cov}(\mathcal{M})$-Luzin set L such that L^{n} is $S_{1}(\mathcal{O}, \mathcal{O})$ for all n.
ω-cover: $X \notin \mathcal{O}$ and for every finite $F \subseteq X$ there is $O \in \mathcal{O}$ with $F \subseteq O$ $\mathrm{S}_{1}(\Omega, \Omega)$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open ω-covers of X there are sets $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $\left\{O_{n}: n \in \mathbb{N}\right\}$ is an ω-cover Sakai: X^{n} is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ for all $n \Leftrightarrow X$ is $\mathrm{S}_{1}(\Omega, \Omega)$

Luzin-type sets

Theorem (Just, Miller, Scheepers, Szeptycki $(\operatorname{cov}(\mathcal{M})=\mathfrak{c}))$

There is a $\operatorname{cov}(\mathcal{M})$-Luzin set L such that L^{n} is $S_{1}(\mathcal{O}, \mathcal{O})$ for all n.
ω-cover: $X \notin \mathcal{O}$ and for every finite $F \subseteq X$ there is $O \in \mathcal{O}$ with $F \subseteq O$ $\mathrm{S}_{1}(\Omega, \Omega)$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open ω-covers of X there are sets $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $\left\{O_{n}: n \in \mathbb{N}\right\}$ is an ω-cover Sakai: X^{n} is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ for all $n \Leftrightarrow X$ is $\mathrm{S}_{1}(\Omega, \Omega)$

- A topological proof, no chance to weaken assumptions with a similar construction.

Luzin-type sets

Theorem (Just, Miller, Scheepers, Szeptycki $(\operatorname{cov}(\mathcal{M})=\mathfrak{c}))$

There is a $\operatorname{cov}(\mathcal{M})$-Luzin set L such that L^{n} is $S_{1}(\mathcal{O}, \mathcal{O})$ for all n.
ω-cover: $X \notin \mathcal{O}$ and for every finite $F \subseteq X$ there is $O \in \mathcal{O}$ with $F \subseteq O$ $\mathrm{S}_{1}(\Omega, \Omega)$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open ω-covers of X there are sets $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $\left\{O_{n}: n \in \mathbb{N}\right\}$ is an ω-cover Sakai: X^{n} is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ for all $n \Leftrightarrow X$ is $\mathrm{S}_{1}(\Omega, \Omega)$

- A topological proof, no chance to weaken assumptions with a similar construction.
- $\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})$ is enough to construct $\operatorname{a~} \operatorname{cov}(\mathcal{M})$-Luzin set

Luzin-type sets

Theorem (Just, Miller, Scheepers, Szeptycki $(\operatorname{cov}(\mathcal{M})=\mathfrak{c}))$

There is a $\operatorname{cov}(\mathcal{M})$-Luzin set L such that L^{n} is $S_{1}(\mathcal{O}, \mathcal{O})$ for all n.
ω-cover: $X \notin \mathcal{O}$ and for every finite $F \subseteq X$ there is $O \in \mathcal{O}$ with $F \subseteq O$ $\mathrm{S}_{1}(\Omega, \Omega)$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open ω-covers of X there are sets $O_{1} \in \mathcal{O}_{1}, O_{2} \in \mathcal{O}_{2}, \ldots$ such that $\left\{O_{n}: n \in \mathbb{N}\right\}$ is an ω-cover Sakai: X^{n} is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ for all $n \Leftrightarrow X$ is $\mathrm{S}_{1}(\Omega, \Omega)$

- A topological proof, no chance to weaken assumptions with a similar construction.
- $\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})$ is enough to construct $\operatorname{a~} \operatorname{cov}(\mathcal{M})$-Luzin set

Goal: find a new construction and improve the theorem

Combinatorics

The Cantor space: $\mathrm{P}(\mathbb{N}) \approx\{0,1\}^{\mathbb{N}} \approx$ Cantor set $\subseteq \mathbb{R}$

Combinatorics

The Cantor space: $\mathrm{P}(\mathbb{N}) \approx\{0,1\}^{\mathbb{N}} \approx$ Cantor set $\subseteq \mathbb{R}$

$$
\mathrm{P}(\mathbb{N})=\operatorname{Fin} \cup[\mathbb{N}]^{\infty}
$$

Combinatorics

The Cantor space: $\mathrm{P}(\mathbb{N}) \approx\{0,1\}^{\mathbb{N}} \approx$ Cantor set $\subseteq \mathbb{R}$

$$
\mathrm{P}(\mathbb{N})=\operatorname{Fin} \cup[\mathbb{N}]^{\infty}
$$

- $[\mathbb{N}]^{\infty} \supseteq U:$ a nonprincipal ultrafilter

Combinatorics

The Cantor space: $\mathrm{P}(\mathbb{N}) \approx\{0,1\}^{\mathbb{N}} \approx$ Cantor set $\subseteq \mathbb{R}$

$$
\mathrm{P}(\mathbb{N})=\operatorname{Fin} \cup[\mathbb{N}]^{\infty}
$$

- $[\mathbb{N}]^{\infty} \supseteq U$: a nonprincipal ultrafilter
- For $x, y \in[\mathbb{N}]^{\infty}, x \leq u y$ if $\{n: x(n) \leq y(n)\} \in U$

Combinatorics

The Cantor space: $\mathrm{P}(\mathbb{N}) \approx\{0,1\}^{\mathbb{N}} \approx$ Cantor set $\subseteq \mathbb{R}$

$$
\mathrm{P}(\mathbb{N})=\operatorname{Fin} \cup[\mathbb{N}]^{\infty}
$$

- $[\mathbb{N}]^{\infty} \supseteq U$: a nonprincipal ultrafilter
- For $x, y \in[\mathbb{N}]^{\infty}, x \leq u y$ if $\{n: x(n) \leq y(n)\} \in U$
- $\mathfrak{b}(U)$: minimal cardinality of $a \leq U$-unbounded set

Combinatorics

The Cantor space: $\mathrm{P}(\mathbb{N}) \approx\{0,1\}^{\mathbb{N}} \approx$ Cantor set $\subseteq \mathbb{R}$

$$
\mathrm{P}(\mathbb{N})=\operatorname{Fin} \cup[\mathbb{N}]^{\infty}
$$

- $[\mathbb{N}]^{\infty} \supseteq U$: a nonprincipal ultrafilter
- For $x, y \in[\mathbb{N}]^{\infty}, x \leq u y$ if $\{n: x(n) \leq y(n)\} \in U$
- $\mathfrak{b}(U)$: minimal cardinality of $a \leq u$-unbounded set
- $[\mathbb{N}]^{\infty} \supseteq\left\{x_{\alpha}: \alpha<\mathfrak{b}(U)\right\}$ is a U-scale if

$$
\forall_{\alpha<\beta} x_{\alpha} \leq_{U} x_{\beta}, \quad \forall_{z \in[\mathbb{N}] \infty} \exists_{\alpha} z \leq_{U} x_{\alpha}
$$

Combinatorics

The Cantor space: $\mathrm{P}(\mathbb{N}) \approx\{0,1\}^{\mathbb{N}} \approx$ Cantor set $\subseteq \mathbb{R}$

$$
\mathrm{P}(\mathbb{N})=\operatorname{Fin} \cup[\mathbb{N}]^{\infty}
$$

- $[\mathbb{N}]^{\infty} \supseteq U$: a nonprincipal ultrafilter
- For $x, y \in[\mathbb{N}]^{\infty}, x \leq u y$ if $\{n: x(n) \leq y(n)\} \in U$
- $\mathfrak{b}(U)$: minimal cardinality of a $\leq u$-unbounded set
- $[\mathbb{N}]^{\infty} \supseteq\left\{x_{\alpha}: \alpha<\mathfrak{b}(U)\right\}$ is a U-scale if

$$
\forall_{\alpha<\beta} x_{\alpha} \leq u x_{\beta}, \quad \forall_{z \in[\mathbb{N}] \infty} \exists_{\alpha} z \leq u x_{\alpha}
$$

Lemma (Sz, Tsaban, Zdomskyy)

Assume that U is an ultrafilter such that $\mathfrak{b}(U)=\operatorname{cov}(\mathcal{M})$. For a U-scale X the $\operatorname{set}(X \cup \text { Fin })^{n}$ is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ for all n.

Combinatorics

The Cantor space: $\mathrm{P}(\mathbb{N}) \approx\{0,1\}^{\mathbb{N}} \approx$ Cantor set $\subseteq \mathbb{R}$

$$
\mathrm{P}(\mathbb{N})=\operatorname{Fin} \cup[\mathbb{N}]^{\infty}
$$

- $[\mathbb{N}]^{\infty} \supseteq U$: a nonprincipal ultrafilter
- For $x, y \in[\mathbb{N}]^{\infty}, x \leq u y$ if $\{n: x(n) \leq y(n)\} \in U$
- $\mathfrak{b}(U)$: minimal cardinality of a $\leq U$-unbounded set
- $[\mathbb{N}]^{\infty} \supseteq\left\{x_{\alpha}: \alpha<\mathfrak{b}(U)\right\}$ is a U-scale if

$$
\forall_{\alpha<\beta} x_{\alpha} \leq_{U} x_{\beta}, \quad \forall_{z \in[\mathbb{N}]_{\infty}} \exists_{\alpha} z \leq_{U} x_{\alpha}
$$

Lemma (Sz, Tsaban, Zdomskyy)

Assume that U is an ultrafilter such that $\mathfrak{b}(U)=\operatorname{cov}(\mathcal{M})$. For a U-scale X the set $(X \cup \text { Fin })^{n}$ is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ for all n.

- For every meager $M \subseteq[\mathbb{N}]^{\infty}$, there are a set $f \in[\mathbb{N}]^{\infty}$ and an interval partition $a \in[\mathbb{N}]^{\infty}$
$M \subseteq\left\{x \in[\mathbb{N}]^{\infty}: x \cap[a(n), a(n+1)) \neq f \cap[a(n), a(n+1))\right.$ for all but fin many $\left.n\right\}$

Luzin-type sets and combinatorics

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M}))$
Assume that U is an ultrafilter and $\mathfrak{b}(U)=\operatorname{cov}(\mathcal{M})$. There is a U-scale that is a $\operatorname{cov}(\mathcal{M})$-Luzin set.

Luzin-type sets and combinatorics

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M}))$

Assume that U is an ultrafilter and $\mathfrak{b}(U)=\operatorname{cov}(\mathcal{M})$. There is a U-scale that is a $\operatorname{cov}(\mathcal{M})$-Luzin set.

Lemma (Sz, Wiśniewski)

Let U be an ultrafilter, $d \in[\mathbb{N}]^{\infty}$, and $\left\{M_{\beta}: \beta<\alpha\right\}$ be a family of meager sets, where $\alpha<\operatorname{cov}(\mathcal{M})$.
There is $x \in[\mathbb{N}]^{\infty}$ such that $d \leq u x$ and $x \notin \bigcup_{\beta<\alpha} M_{\beta}$.

Luzin-type sets and combinatorics

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M}))$

Assume that U is an ultrafilter and $\mathfrak{b}(U)=\operatorname{cov}(\mathcal{M})$. There is a U-scale that is a $\operatorname{cov}(\mathcal{M})$-Luzin set.

Lemma (Sz, Wiśniewski)

Let U be an ultrafilter, $d \in[\mathbb{N}]^{\infty}$, and $\left\{M_{\beta}: \beta<\alpha\right\}$ be a family of meager sets, where $\alpha<\operatorname{cov}(\mathcal{M})$.
There is $x \in[\mathbb{N}]^{\infty}$ such that $d \leq u x$ and $x \notin \bigcup_{\beta<\alpha} M_{\beta}$.

- For $\beta<\alpha$, there are $f_{\beta}, a_{\beta} \in[\mathbb{N}]^{\infty}$ such that

$$
M_{\beta}=\left\{x \in[\mathbb{N}]^{\infty}: x \cap\left[a_{\beta}(n), a_{\beta}(n+1)\right) \neq f_{\beta} \cap\left[a_{\beta}(n), a_{\beta}(n+1)\right)\right.
$$

Luzin-type sets and combinatorics

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M}))$

Assume that U is an ultrafilter and $\mathfrak{b}(U)=\operatorname{cov}(\mathcal{M})$. There is a U-scale that is $\operatorname{cov}(\mathcal{M})$-Luzin set.

Lemma (Sz, Wiśniewski)

Let U be an ultrafilter, $d \in[\mathbb{N}]^{\infty}$, and $\left\{M_{\beta}: \beta<\alpha\right\}$ be a family of meager sets, where $\alpha<\operatorname{cov}(\mathcal{M})$.
There is $x \in[\mathbb{N}]^{\infty}$ such that $d \leq u x$ and $x \notin \bigcup_{\beta<\alpha} M_{\beta}$.

- For $\beta<\alpha$, there are $f_{\beta}, a_{\beta} \in[\mathbb{N}]^{\infty}$ such that

$$
M_{\beta}=\left\{x \in[\mathbb{N}]^{\infty}: x \cap\left[a_{\beta}(n), a_{\beta}(n+1)\right) \neq f_{\beta} \cap\left[a_{\beta}(n), a_{\beta}(n+1)\right)\right.
$$

for all but finitely many n \}

- In other words, pick x such that $d \leq u x$ and for each $\beta<\alpha$

$$
x \cap\left[a_{\beta}(n), a_{\beta}(n+1)\right)=f_{\beta} \cap\left[a_{\beta}(n), a_{\beta}(n+1)\right) \text { for inf many } n
$$

Luzin-type sets and combinatorics

Theorem (Just, Miller, Scheepers, Szeptycki $(\operatorname{cov}(\mathcal{M})=\mathfrak{c}))$

There is a $\operatorname{cov}(\mathcal{M})$-Luzin set L such that L^{n} is $S_{1}(\mathcal{O}, \mathcal{O})$ for all n

Lemma (Sz, Tsaban, Zdomskyy)

Assume that U is an ultrafilter and $\mathfrak{b}(U)=\operatorname{cov}(\mathcal{M})$. For a U-scale X the $\operatorname{set}(X \cup \text { Fin })^{n}$ is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ for all n.

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M}))$
Assume that U is an ultrafilter and $\mathfrak{b}(U)=\operatorname{cov}(\mathcal{M})$. There is a U-scale that is a $\operatorname{cov}(\mathcal{M})$-Luzin set.

Luzin-type sets and combinatorics

Theorem (Just, Miller, Scheepers, Szeptycki $(\operatorname{cov}(\mathcal{M})=c))$

There is a $\operatorname{cov}(\mathcal{M})$-Luzin set L such that L^{n} is $S_{1}(\mathcal{O}, \mathcal{O})$ for all n

Lemma (Sz, Tsaban, Zdomskyy)

Assume that U is an ultrafilter and $\mathfrak{b}(U)=\operatorname{cov}(\mathcal{M})$. For a U-scale X the $\operatorname{set}(X \cup \text { Fin })^{n}$ is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ for all n.

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M}))$
Assume that U is an ultrafilter and $\mathfrak{b}(U)=\operatorname{cov}(\mathcal{M})$.
There is a U-scale that is a $\operatorname{cov}(\mathcal{M})$-Luzin set.

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})+\operatorname{cov}(\mathcal{M})$ is regular))

There is a $\operatorname{cov}(\mathcal{M})$-Luzin set L such that L^{n} is $S_{1}(\mathcal{O}, \mathcal{O})$ for all n.

Luzin-type sets and combinatorics

Theorem (Just, Miller, Scheepers, Szeptycki $(\operatorname{cov}(\mathcal{M})=c))$

There is a $\operatorname{cov}(\mathcal{M})$-Luzin set L such that L^{n} is $S_{1}(\mathcal{O}, \mathcal{O})$ for all n

Lemma (Sz, Tsaban, Zdomskyy)

Assume that U is an ultrafilter and $\mathfrak{b}(U)=\operatorname{cov}(\mathcal{M})$. For a U-scale X the $\operatorname{set}(X \cup \text { Fin })^{n}$ is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ for all n.

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M}))$

Assume that U is an ultrafilter and $\mathfrak{b}(U)=\operatorname{cov}(\mathcal{M})$. There is a U-scale that is a $\operatorname{cov}(\mathcal{M})$-Luzin set.

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})+\operatorname{cov}(\mathcal{M})$ is regular))

There is a $\operatorname{cov}(\mathcal{M})$-Luzin set L such that L^{n} is $S_{1}(\mathcal{O}, \mathcal{O})$ for all n.
There is an ultrafilter U with $\mathfrak{b}(U)=\operatorname{cov}(\mathcal{M})$.

Luzin-type sets and combinatorics

Theorem (Just, Miller, Scheepers, Szeptycki $(\operatorname{cov}(\mathcal{M})=c))$

There is a $\operatorname{cov}(\mathcal{M})$-Luzin set L such that L^{n} is $S_{1}(\mathcal{O}, \mathcal{O})$ for all n

Lemma (Sz, Tsaban, Zdomskyy)

Assume that U is an ultrafilter and $\mathfrak{b}(U)=\operatorname{cov}(\mathcal{M})$.
For a U-scale X the $\operatorname{set}(X \cup \text { Fin })^{n}$ is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ for all n.
Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M}))$
Assume that U is an ultrafilter and $\mathfrak{b}(U)=\operatorname{cov}(\mathcal{M})$.
There is a U-scale that is a $\operatorname{cov}(\mathcal{M})$-Luzin set.

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})+\operatorname{cov}(\mathcal{M})$ is regular))

There is a $\operatorname{cov}(\mathcal{M})$-Luzin set L such that L^{n} is $S_{1}(\mathcal{O}, \mathcal{O})$ for all n.
There is an ultrafilter U with $\mathfrak{b}(U)=\operatorname{cov}(\mathcal{M})$. Take $L=X \cup$ Fin.

Products of Luzin-type sets

$\mathrm{S}_{\text {fin }}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

Products of Luzin-type sets

$\mathrm{S}_{\text {fin }}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

Products of Luzin-type sets

$\mathrm{S}_{\text {fin }}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

Products of Luzin-type sets

$\mathrm{S}_{\text {fin }}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

Products of Luzin-type sets

$\mathrm{S}_{\text {fin }}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

$\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O}) \longrightarrow$ Lindelöf

Products of Luzin-type sets

$\mathrm{S}_{\text {fin }}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

$$
\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O}) \stackrel{*}{\longleftrightarrow} \text { Lindelöf }
$$

Products of Luzin-type sets

$\mathrm{S}_{\text {fin }}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

$\mathcal{F}_{1} \subseteq \mathcal{O}_{1}$

$\mathcal{F}_{2} \subseteq \mathcal{O}_{2}$

σ-compact $\longrightarrow \mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O}) \longleftrightarrow$ Lindelöf

Products of Luzin-type sets

$\mathrm{S}_{\text {fin }}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

$\mathcal{F}_{1} \subseteq \mathcal{O}_{1}$

$\mathcal{F}_{2} \subseteq \mathcal{O}_{2}$

$\mathcal{F}_{3} \subseteq \mathcal{O}_{3}$

σ-compact $\stackrel{\star}{\longleftrightarrow} \mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O}) \stackrel{\star}{\longleftrightarrow}$ Lindelöf

Products of Luzin-type sets

$\mathrm{S}_{\text {fin }}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

$\mathcal{F}_{1} \subseteq \mathcal{O}_{1}$

$$
\sigma \text {-compact } \stackrel{x}{\longleftrightarrow} \operatorname{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O}) \stackrel{x}{\longleftrightarrow} \text { Lindelöf }
$$

$$
\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})
$$

Products of Luzin-type sets

$\mathrm{S}_{\text {fin }}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

$\mathcal{F}_{1} \subseteq \mathcal{O}_{1}$

σ-compact $\stackrel{x}{\longleftrightarrow} \mathrm{~S}_{\text {fin }}(\mathcal{O}, \mathcal{O}) \stackrel{x}{\longleftrightarrow}$ Lindelöf
$\uparrow \downarrow$

$$
\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})
$$

Products of Luzin-type sets

$\mathrm{S}_{\text {fin }}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

$\mathcal{F}_{1} \subseteq \mathcal{O}_{1}$

$\mathcal{F}_{2} \subseteq \mathcal{O}_{2}$

$$
\mathcal{F}_{3} \subseteq \mathcal{O}_{3}
$$

- $\mathbb{N}^{\mathbb{N}} \supseteq Y$ is dominating if $\forall_{x \in \mathbb{N}^{\mathbb{N}}} \exists_{y \in Y}\{n: x(n) \leq y(n)\}$ is cofinite

Theorem (Recław)

X is $\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O}) \Leftrightarrow$ no continuous image of X into $\mathbb{N}^{\mathbb{N}}$ is dominating

Products of Luzin-type sets

$\mathrm{S}_{\text {fin }}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

$\mathcal{F}_{1} \subseteq \mathcal{O}_{1}$

$\mathcal{F}_{2} \subseteq \mathcal{O}_{2}$

$$
\mathcal{F}_{3} \subseteq \mathcal{O}_{3}
$$

- $\mathbb{N}^{\mathbb{N}} \supseteq Y$ is dominating if $\forall_{x \in \mathbb{N}^{\mathbb{N}}} \exists_{y \in Y}\{n: x(n) \leq y(n)\}$ is cofinite

Theorem (Recław)

X is $\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O}) \Leftrightarrow$ no continuous image of X into $\mathbb{N}^{\mathbb{N}}$ is dominating

- \mathfrak{d} : minimal cardinality of a dominating set
- $|X|<\mathfrak{d} \Rightarrow X$ is $\mathrm{S}_{\text {fin }}(\mathcal{O}, \mathcal{O})$

Products of Luzin-type sets

$\mathrm{S}_{\text {fin }}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

$\mathcal{F}_{1} \subseteq \mathcal{O}_{1}$

$\mathcal{F}_{2} \subseteq \mathcal{O}_{2}$

$$
\mathcal{F}_{3} \subseteq \mathcal{O}_{3}
$$

Theorem (Bartoszyński, Shelah, Tsaban $(\operatorname{cov}(\mathcal{M})=c))$
There are $\operatorname{cov}(\mathcal{M})$-Luzin sets K, L such that

- K^{n}, L^{n} are $S_{1}(\mathcal{O}, \mathcal{O})$ for all n
- $K \times L$ is not $\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$

Products of Luzin-type sets

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})+\operatorname{cov}(\mathcal{M})$ is regular))

There are ultrafilters U, \widetilde{U} and sets X, Y such that

- X is a U-scale and $\operatorname{a} \operatorname{cov}(\mathcal{M})$-Luzin set
- Y is a \widetilde{U}-scale and $\operatorname{a} \operatorname{cov}(\mathcal{M})$-Luzin set
- $(X \cup \text { Fin })^{n}$ and $(Y \cup \text { Fin })^{n}$ are $S_{1}(\mathcal{O}, \mathcal{O})$ for all n
- $(X \cup$ Fin $) \times(Y \cup$ Fin $)$ is not $\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$

Products of Luzin-type sets

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})+\operatorname{cov}(\mathcal{M})$ is regular))

There are ultrafilters U, \widetilde{U} and sets X, Y such that

- X is a U-scale and $\operatorname{a} \operatorname{cov}(\mathcal{M})$-Luzin set
- Y is a \widetilde{U}-scale and $\operatorname{a} \operatorname{cov}(\mathcal{M})$-Luzin set
- $(X \cup \text { Fin })^{n}$ and $(Y \cup \text { Fin })^{n}$ are $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ for all n
- $(X \cup$ Fin $) \times(Y \cup$ Fin $)$ is not $S_{\text {fin }}(\mathcal{O}, \mathcal{O})$

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})+\operatorname{cov}(\mathcal{M})$ is regular))
There $\operatorname{are} \operatorname{cov}(\mathcal{M})$-Luzin sets K, L such that

- K^{n}, L^{n} are $S_{1}(\mathcal{O}, \mathcal{O})$ for all n
- $K \times L$ is not $\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$

Products of Luzin-type sets

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})+\operatorname{cov}(\mathcal{M})$ is regular))

There are ultrafilters U, \widetilde{U} and sets X, Y such that

- X is a U-scale and $\operatorname{a} \operatorname{cov}(\mathcal{M})$-Luzin set
- Y is a \widetilde{U}-scale and $\operatorname{acov}(\mathcal{M})$-Luzin set
- $(X \cup \text { Fin })^{n}$ and $(Y \cup \text { Fin })^{n}$ are $S_{1}(\mathcal{O}, \mathcal{O})$ for all n
- $(X \cup$ Fin $) \times(Y \cup$ Fin $)$ is not $\mathrm{S}_{\text {fin }}(\mathcal{O}, \mathcal{O})$

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})+\operatorname{cov}(\mathcal{M})$ is regular))
There are $\operatorname{cov}(\mathcal{M})$-Luzin sets K, L such that

- K^{n}, L^{n} are $S_{1}(\mathcal{O}, \mathcal{O})$ for all n
- $K \times L$ is not $\mathrm{S}_{\text {fin }}(\mathcal{O}, \mathcal{O})$

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M}))$

Assume that U is an ultrafilter and $\mathfrak{b}(U)=\operatorname{cov}(\mathcal{M})$.
There is a U-scale that is a $\operatorname{cov}(\mathcal{M})$-Luzin set.

Separation of properties

Separation of properties

$\mathrm{U}_{\text {fin }}(\mathcal{O}, \Omega)$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\left\{\bigcup \mathcal{F}_{n}: n \in \mathbb{N}\right\}$ is an ω-cover

Separation of properties

$\mathrm{U}_{\text {fin }}(\mathcal{O}, \Omega)$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\left\{\bigcup \mathcal{F}_{n}: n \in \mathbb{N}\right\}$ is an ω-cover

Separation of properties

$\mathrm{U}_{\text {fin }}(\mathcal{O}, \Omega)$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\left\{\bigcup \mathcal{F}_{n}: n \in \mathbb{N}\right\}$ is an ω-cover

Separation of properties

$\mathrm{U}_{\text {fin }}(\mathcal{O}, \Omega)$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\left\{\bigcup \mathcal{F}_{n}: n \in \mathbb{N}\right\}$ is an ω-cover

Separation of properties

$\mathrm{U}_{\text {fin }}(\mathcal{O}, \Omega)$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\left\{\bigcup \mathcal{F}_{n}: n \in \mathbb{N}\right\}$ is an ω-cover

Separation of properties

$\mathrm{U}_{\text {fin }}(\mathcal{O}, \Omega)$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\left\{\bigcup \mathcal{F}_{n}: n \in \mathbb{N}\right\}$ is an ω-cover

Separation of properties

$\mathrm{U}_{\text {fin }}(\mathcal{O}, \Omega)$: for every sequence $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of open covers of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\left\{\bigcup \mathcal{F}_{n}: n \in \mathbb{N}\right\}$ is an ω-cover

$$
\begin{array}{r}
\sigma \text {-compact } \longrightarrow \mathrm{U}_{\text {fin }}(\mathcal{O}, \Omega) \longrightarrow \mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O}) \\
\uparrow \\
\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})
\end{array}
$$

Separation of properties

$$
\begin{array}{r}
\sigma \text {-compact } \longrightarrow \mathrm{U}_{\text {fin }}(\mathcal{O}, \Omega) \longrightarrow \mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O}) \\
\uparrow \\
\uparrow \\
\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})
\end{array}
$$

Separation of properties

$$
\begin{array}{r}
\sigma \text {-compact } \stackrel{\star}{\longleftrightarrow} \mathrm{U}_{\text {fin }}(\mathcal{O}, \Omega) \stackrel{\text { it depends }}{\leftrightarrows} \\
\\
\mathrm{S}_{\text {fin }}(\mathcal{O}, \mathcal{O}) \\
\uparrow \downarrow \\
\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})
\end{array}
$$

Separation of properties

$$
\begin{array}{r}
\sigma \text {-compact } \stackrel{x}{\longleftrightarrow} \mathrm{U}_{\text {fin }}(\mathcal{O}, \Omega) \stackrel{\text { it depends }}{\leftrightarrows} \\
\mathrm{S}_{\text {fin }}(\mathcal{O}, \mathcal{O}) \\
\uparrow \downarrow \\
\\
\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})
\end{array}
$$

Theorem (Tsaban, Zdomskyy $(\mathfrak{u}<\mathfrak{g})$)
$\mathrm{U}_{\mathrm{fin}}(\mathcal{O}, \Omega)=\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$

Separation of properties

$$
\begin{array}{r}
\sigma \text {-compact } \stackrel{\star}{\leftrightarrows} \mathrm{U}_{\mathrm{fin}}(\mathcal{O}, \Omega) \stackrel{\text { it depends }}{\leftrightarrows} \mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O}) \\
\underset{\sim}{\leftrightarrows} \\
\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})
\end{array}
$$

Theorem (Tsaban, Zdomskyy $(\mathfrak{u}<\mathfrak{g})$)
$\mathrm{U}_{\mathrm{fin}}(\mathcal{O}, \Omega)=\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$

Theorem (Scheepers, Tsaban $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})))$
There is $\operatorname{arov}(\mathcal{M})$-Luzin set (and thus $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$) that is no $\mathrm{U}_{\text {fin }}(\mathcal{O}, \Omega)$.

Separation of properties

σ-compact $\stackrel{\star}{\leftrightarrows} \mathrm{U}_{\text {fin }}(\mathcal{O}, \Omega) \stackrel{\text { it depends }}{\leftrightarrows} \mathrm{S}_{\text {fin }}(\mathcal{O}, \mathcal{O})$
$\uparrow \downarrow$
$\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$

Theorem (Tsaban, Zdomskyy $(\mathfrak{u}<\mathfrak{g})$)
$\mathrm{U}_{\mathrm{fin}}(\mathcal{O}, \Omega)=\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$

Theorem (Scheepers, Tsaban $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})))$
There is a $\operatorname{cov}(\mathcal{M})$-Luzin set (and thus $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$) that is no $\mathrm{U}_{\text {fin }}(\mathcal{O}, \Omega)$.

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})))$
There is $\operatorname{arov}(\mathcal{M})$-Luzin set (and thus $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$) that is no $\mathrm{U}_{\text {fin }}(\mathcal{O}, \Omega)$.

Applications to functions spaces

$C_{p}(X):=\{$ cont $f: X \rightarrow \mathbb{R}\}$ with pointwise convergence topology

Applications to functions spaces

$C_{p}(X):=\{\operatorname{cont} f: X \rightarrow \mathbb{R}\}$ with pointwise convergence topology
How good $\mathrm{C}_{\mathrm{p}}(\mathrm{X})$ could be?

Applications to functions spaces

$C_{p}(X):=\{\operatorname{cont} f: X \rightarrow \mathbb{R}\}$ with pointwise convergence topology
How good $C_{p}(X)$ could be?
$\mathrm{C}_{\mathrm{p}}(X)$ is metrizable (or just first countable) $\Leftrightarrow X$ is countable

Applications to functions spaces

$C_{p}(X):=\{\operatorname{cont} f: X \rightarrow \mathbb{R}\}$ with pointwise convergence topology
How good $C_{p}(X)$ could be?
$\mathrm{C}_{\mathrm{p}}(X)$ is metrizable (or just first countable) $\Leftrightarrow X$ is countable
Countable strong fan tightness: for every sequence A_{1}, A_{2}, \ldots and $z \in \bigcap_{n} \overline{A_{n}}$, there are $a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots$ such that $z \in \overline{\left\{a_{n}: n \in \mathbb{N}\right\}}$.

Applications to functions spaces

$C_{p}(X):=\{\operatorname{cont} f: X \rightarrow \mathbb{R}\}$ with pointwise convergence topology
How good $C_{p}(X)$ could be?
$\mathrm{C}_{\mathrm{p}}(X)$ is metrizable (or just first countable) $\Leftrightarrow X$ is countable
Countable strong fan tightness: for every sequence A_{1}, A_{2}, \ldots and $z \in \bigcap_{n} \overline{A_{n}}$, there are $a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots$ such that $z \in \overline{\left\{a_{n}: n \in \mathbb{N}\right\}}$. Countable fan tightness: for every sequence A_{1}, A_{2}, \ldots and $z \in \bigcap_{n} \overline{A_{n}}$, there are finite $F_{1} \subseteq A_{1}, F_{2} \subseteq A_{2}, \ldots$ such that $z \in \overline{\bigcup_{n} F_{n}}$.

Applications to functions spaces

Theorem (Sakai; Just, Miller, Scheepers, Szeptycki)

$C_{p}(X)$ has countable strong fan tightness $\Leftrightarrow X^{n}$ is $S_{1}(\mathcal{O}, \mathcal{O})$ for all n $\mathrm{C}_{\mathrm{p}}(X)$ has countable fan tightness $\Leftrightarrow X^{n}$ is $\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$ for all n

Applications to functions spaces

Theorem (Sakai; Just, Miller, Scheepers, Szeptycki)

$C_{p}(X)$ has countable strong fan tightness $\Leftrightarrow X^{n}$ is $S_{1}(\mathcal{O}, \mathcal{O})$ for all n $\mathrm{C}_{\mathrm{p}}(X)$ has countable fan tightness $\Leftrightarrow X^{n}$ is $\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$ for all n

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})+\operatorname{cov}(\mathcal{M})$ is regular) $)$
There $\operatorname{are} \operatorname{cov}(\mathcal{M})$-Luzin sets X, Y such that

- X^{n}, Y^{n} are $S_{1}(\mathcal{O}, \mathcal{O})$ for all n
- $X \times Y$ is not $\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$

Applications to functions spaces

Theorem (Sakai; Just, Miller, Scheepers, Szeptycki)

$\mathrm{C}_{\mathrm{p}}(X)$ has countable strong fan tightness $\Leftrightarrow X^{n}$ is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ for all n $\mathrm{C}_{\mathrm{p}}(X)$ has countable fan tightness $\Leftrightarrow X^{n}$ is $\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$ for all n

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})+\operatorname{cov}(\mathcal{M})$ is regular))
There $\operatorname{are} \operatorname{cov}(\mathcal{M})$-Luzin sets X, Y such that

- X^{n}, Y^{n} are $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ for all n
- $X \times Y$ is not $\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$

Corollary $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})+\operatorname{cov}(\mathcal{M})$ is regular) $)$
There are $\operatorname{cov}(\mathcal{M})$-Luzin sets X, Y such that

- $C_{p}(X), C_{p}(Y)$ have countable strong fan tightness
- $\mathrm{C}_{\mathrm{p}}(X) \times \mathrm{C}_{\mathrm{p}}(Y)$ does not have countable fan tightness

Applications to functions spaces

Theorem (Sakai; Just, Miller, Scheepers, Szeptycki)

$\mathrm{C}_{\mathrm{p}}(X)$ has countable strong fan tightness $\Leftrightarrow X^{n}$ is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ for all n $\mathrm{C}_{\mathrm{p}}(X)$ has countable fan tightness $\Leftrightarrow X^{n}$ is $\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$ for all n

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})+\operatorname{cov}(\mathcal{M})$ is regular))
There $\operatorname{are} \operatorname{cov}(\mathcal{M})$-Luzin sets X, Y such that

- X^{n}, Y^{n} are $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ for all n
- $X \times Y$ is not $\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$

Corollary $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})+\operatorname{cov}(\mathcal{M})$ is regular) $)$

There are $\operatorname{cov}(\mathcal{M})$-Luzin sets X, Y such that

- $C_{p}(X), C_{p}(Y)$ have countable strong fan tightness
- $\mathrm{C}_{\mathrm{p}}(X) \times \mathrm{C}_{\mathrm{p}}(Y)$ does not have countable fan tightness

$$
C_{p}(X) \times C_{p}(Y) \approx C_{p}(X \sqcup Y),
$$

Applications to functions spaces

Theorem (Sakai; Just, Miller, Scheepers, Szeptycki)

$\mathrm{C}_{\mathrm{p}}(X)$ has countable strong fan tightness $\Leftrightarrow X^{n}$ is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ for all n $\mathrm{C}_{\mathrm{p}}(X)$ has countable fan tightness $\Leftrightarrow X^{n}$ is $\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$ for all n

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})+\operatorname{cov}(\mathcal{M})$ is regular))
There $\operatorname{are} \operatorname{cov}(\mathcal{M})$-Luzin sets X, Y such that

- X^{n}, Y^{n} are $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ for all n
- $X \times Y$ is not $\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$

Corollary $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})+\operatorname{cov}(\mathcal{M})$ is regular) $)$

There are $\operatorname{cov}(\mathcal{M})$-Luzin sets X, Y such that

- $C_{p}(X), C_{p}(Y)$ have countable strong fan tightness
- $C_{p}(X) \times C_{p}(Y)$ does not have countable fan tightness

$$
\mathrm{C}_{\mathrm{p}}(X) \times \mathrm{C}_{\mathrm{p}}(Y) \approx \mathrm{C}_{\mathrm{p}}(X \sqcup Y), \quad X \times Y \subseteq(X \sqcup Y)^{2}
$$

Comments

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})+\operatorname{cov}(\mathcal{M})$ is regular))

There $\operatorname{are} \operatorname{cov}(\mathcal{M})$-Luzin sets X, Y such that

- X^{n}, Y^{n} are $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ for all n
- $X \times Y$ is not $\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$

Theorem (Scheepers, Tsaban; Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})))$
There is $\operatorname{arov}(\mathcal{M})$-Luzin set (and thus $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$) that is no $\mathrm{U}_{\text {fin }}(\mathcal{O}, \Omega)$.

Comments

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})+\operatorname{cov}(\mathcal{M})$ is regular))

There $\operatorname{are} \operatorname{cov}(\mathcal{M})$-Luzin sets X, Y such that

- X^{n}, Y^{n} are $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ for all n
- $X \times Y$ is not $\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$

Theorem (Scheepers, Tsaban; Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})))$
There is $\operatorname{arov}(\mathcal{M})$-Luzin set (and thus $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$) that is no $\mathrm{U}_{\text {fin }}(\mathcal{O}, \Omega)$.

What about just sets with the above properties?

Comments

Theorem (Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})+\operatorname{cov}(\mathcal{M})$ is regular))

There $\operatorname{are} \operatorname{cov}(\mathcal{M})$-Luzin sets X, Y such that

- X^{n}, Y^{n} are $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ for all n
- $X \times Y$ is not $\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$

Theorem (Scheepers, Tsaban; Sz, Wiśniewski $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M})))$
There is $\operatorname{arov}(\mathcal{M})$-Luzin set (and thus $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$) that is no $\mathrm{U}_{\text {fin }}(\mathcal{O}, \Omega)$.

Theorem (Sz, Tsaban, Zdomskyy $(\operatorname{cov}(\mathcal{M})=\mathfrak{d}+\mathfrak{d}$ is regular) $)$

There are sets X, Y such that

- X^{n}, Y^{n} are $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ for all n
- $X \times Y$ is not $\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$

Theorem (Sz, Tsaban, Zdomskyy $(\operatorname{cov}(\mathcal{M})=\mathfrak{d}))$
There is a set that is $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$ but no $\mathrm{U}_{\text {fin }}(\mathcal{O}, \Omega)$.

