Products of Luzin-type sets with combinatorial properties

Piotr Szewczak

Cardinal Stefan Wyszyński University in Warsaw, Poland

joint work with Grzegorz Wiśniewski

 $S_1(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of open covers of X there are $\mathcal{O}_1 \in \mathcal{O}_1, \mathcal{O}_2 \in \mathcal{O}_2, \ldots$ such that $X \subseteq \bigcup_n \mathcal{O}_n$

countable $\longrightarrow S_1(\mathcal{O}, \mathcal{O})$

 $S_1(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of open covers of X there are $\mathcal{O}_1 \in \mathcal{O}_1, \mathcal{O}_2 \in \mathcal{O}_2, \ldots$ such that $X \subseteq \bigcup_n \mathcal{O}_n$

countable $\longrightarrow S_1(\mathcal{O}, \mathcal{O})$

Strong Measure Zero: for every sequence of positive numbers $\epsilon_1, \epsilon_2, \ldots$ there are intervals l_1, l_2, \ldots such that diam $(l_n) \le \epsilon_n$ and $X \subseteq \bigcup_n l_n$

 $S_1(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \dots$ of open covers of X there are $\mathcal{O}_1 \in \mathcal{O}_1, \mathcal{O}_2 \in \mathcal{O}_2, \dots$ such that $X \subseteq \bigcup_n \mathcal{O}_n$

$\text{countable} \longrightarrow \mathsf{S}_1(\mathcal{O},\mathcal{O}) \longrightarrow \mathsf{SMZ}$

Strong Measure Zero: for every sequence of positive numbers $\epsilon_1, \epsilon_2, \ldots$ there are intervals l_1, l_2, \ldots such that diam $(l_n) \le \epsilon_n$ and $X \subseteq \bigcup_n l_n$

 $S_1(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of open covers of X there are $\mathcal{O}_1 \in \mathcal{O}_1, \mathcal{O}_2 \in \mathcal{O}_2, \ldots$ such that $X \subseteq \bigcup_n \mathcal{O}_n$

$\mathsf{countable} \longrightarrow \mathsf{S}_1(\mathcal{O}, \mathcal{O}) \longrightarrow \mathsf{SMZ}$

Strong Measure Zero: for every sequence of positive numbers $\epsilon_1, \epsilon_2, \ldots$ there are intervals I_1, I_2, \ldots such that diam $(I_n) \le \epsilon_n$ and $X \subseteq \bigcup_n I_n$ Borel's conjecture: SMZ = countable

 $S_1(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of open covers of X there are $\mathcal{O}_1 \in \mathcal{O}_1, \mathcal{O}_2 \in \mathcal{O}_2, \ldots$ such that $X \subseteq \bigcup_n \mathcal{O}_n$

•
$$\mathbb{N}^{\mathbb{N}} \supseteq Y$$
 is guessable if $\exists_{g \in \mathbb{N}^{\mathbb{N}}} \ \forall_{y \in Y} \{ n : g(n) = y(n) \}$ is infinite

Theorem (Recław)

X is $S_1(\mathcal{O}, \mathcal{O}) \Leftrightarrow$ every continuous image of *X* into $\mathbb{N}^{\mathbb{N}}$ is guessable

 $S_1(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of open covers of X there are $\mathcal{O}_1 \in \mathcal{O}_1, \mathcal{O}_2 \in \mathcal{O}_2, \ldots$ such that $X \subseteq \bigcup_n \mathcal{O}_n$

•
$$\mathbb{N}^{\mathbb{N}} \supseteq Y$$
 is guessable if $\exists_{g \in \mathbb{N}^{\mathbb{N}}} \ \forall_{y \in Y} \{ n : g(n) = y(n) \}$ is infinite

Theorem (Recław)

X is $S_1(\mathcal{O}, \mathcal{O}) \Leftrightarrow$ every continuous image of *X* into $\mathbb{N}^{\mathbb{N}}$ is guessable

 \bullet cov($\mathcal M):$ minimal cardinality of a nonguessable set

•
$$|X| < \mathsf{cov}(\mathcal{M}) \Rightarrow X \text{ is } \mathsf{S}_1(\mathcal{O},\mathcal{O})$$

Luzin set:

X is uncountable and $|X \cap M| = \aleph_0$ for every meager M

Luzin set:

X is uncountable and $|X \cap M| = \aleph_0$ for every meager M

The existence of a Luzin set is independent of ZFC

Luzin set:

X is uncountable and $|X \cap M| = \aleph_0$ for every meager M

The existence of a Luzin set is independent of ZFC

 $\bullet\ {\sf cov}(\mathcal{M}){:}\ {\sf min}\ {\sf cardinality}\ {\sf of}\ {\sf a}\ {\sf family}\ {\sf of}\ {\sf meager}\ {\sf sets}\ {\sf that}\ {\sf covers}\ \mathbb{R}$

• $cof(\mathcal{M})$: min cardinality of a cofinal family of meager sets in $\mathbb R$

 $\operatorname{cov}(\mathcal{M})$ -Luzin set: $|X| \ge \operatorname{cov}(\mathcal{M})$ and $|X \cap M| < \operatorname{cov}(\mathcal{M})$ for every meager M

Luzin set:

X is uncountable and $|X \cap M| = \aleph_0$ for every meager M

The existence of a Luzin set is independent of ZFC

- \bullet cov($\mathcal{M}):$ min cardinality of a family of meager sets that covers $\mathbb R$
- $cof(\mathcal{M})$: min cardinality of a cofinal family of meager sets in $\mathbb R$

$\mathsf{cov}(\mathcal{M})$ -Luzin set: $|X| \ge \mathsf{cov}(\mathcal{M})$ and $|X \cap M| < \mathsf{cov}(\mathcal{M})$ for every meager M

• $(cov(\mathcal{M}) = cof(\mathcal{M}))$ There is a $cov(\mathcal{M})$ -Luzin set:

Luzin set:

X is uncountable and $|X \cap M| = \aleph_0$ for every meager M

The existence of a Luzin set is independent of ZFC

- cov(\mathcal{M}): min cardinality of a family of meager sets that covers $\mathbb R$
- $\operatorname{cof}(\mathcal{M})$: min cardinality of a cofinal family of meager sets in $\mathbb R$

$cov(\mathcal{M})$ -Luzin set: $|X| \ge cov(\mathcal{M})$ and $|X \cap M| < cov(\mathcal{M})$ for every meager M

- $(cov(\mathcal{M}) = cof(\mathcal{M}))$ There is a $cov(\mathcal{M})$ -Luzin set:
 - Let { $M_{\alpha} : \alpha < \mathsf{cov}(\mathcal{M})$ } be a cofinal family of meager sets

Luzin set:

X is uncountable and $|X \cap M| = \aleph_0$ for every meager M

The existence of a Luzin set is independent of ZFC

- cov(\mathcal{M}): min cardinality of a family of meager sets that covers $\mathbb R$
- $cof(\mathcal{M})$: min cardinality of a cofinal family of meager sets in $\mathbb R$

$cov(\mathcal{M})$ -Luzin set: $|X| \ge cov(\mathcal{M})$ and $|X \cap M| < cov(\mathcal{M})$ for every meager M

- $(cov(\mathcal{M}) = cof(\mathcal{M}))$ There is a $cov(\mathcal{M})$ -Luzin set:
 - Let $\{M_{\alpha} : \alpha < cov(\mathcal{M})\}$ be a cofinal family of meager sets
 - At step $\alpha < \mathsf{cov}(\mathcal{M})$ pick

$$x_{\alpha} \in \mathbb{R} \setminus \left(\bigcup_{\beta \leq \alpha} M_{\beta} \cup \{ x_{\beta} : \beta < \alpha \} \right)$$

Luzin set:

X is uncountable and $|X \cap M| = \aleph_0$ for every meager M

The existence of a Luzin set is independent of ZFC

- cov(\mathcal{M}): min cardinality of a family of meager sets that covers $\mathbb R$
- $cof(\mathcal{M})$: min cardinality of a cofinal family of meager sets in $\mathbb R$

$cov(\mathcal{M})$ -Luzin set: $|X| \ge cov(\mathcal{M})$ and $|X \cap M| < cov(\mathcal{M})$ for every meager M

- $(cov(\mathcal{M}) = cof(\mathcal{M}))$ There is a $cov(\mathcal{M})$ -Luzin set:
 - Let $\{M_{\alpha} : \alpha < cov(\mathcal{M})\}$ be a cofinal family of meager sets
 - At step $\alpha < \mathsf{cov}(\mathcal{M})$ pick

$$x_{\alpha} \in \mathbb{R} \setminus \left(\bigcup_{\beta \leq \alpha} M_{\beta} \cup \{ x_{\beta} : \beta < \alpha \} \right)$$

• $\{ x_{\alpha} : \alpha < cov(\mathcal{M}) \}$ is a $cov(\mathcal{M})$ -Luzin set

 $S_1(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of open covers of X there are $\mathcal{O}_1 \in \mathcal{O}_1, \mathcal{O}_2 \in \mathcal{O}_2, \ldots$ such that $X \subseteq \bigcup_n \mathcal{O}_n$

$$|X| < \mathsf{cov}(\mathcal{M}) \Rightarrow X ext{ is } \mathsf{S}_1(\mathcal{O},\mathcal{O})$$

 $cov(\mathcal{M})$ -Luzin set:

 $|X| \geq \operatorname{cov}(\mathcal{M})$ and $|X \cap M| < \operatorname{cov}(\mathcal{M})$ for every meager M

 $S_1(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \dots$ of open covers of X there are $\mathcal{O}_1 \in \mathcal{O}_1, \mathcal{O}_2 \in \mathcal{O}_2, \dots$ such that $X \subseteq \bigcup_n \mathcal{O}_n$

$$|X| < \mathsf{cov}(\mathcal{M}) \Rightarrow X ext{ is } \mathsf{S}_1(\mathcal{O},\mathcal{O})$$

 $cov(\mathcal{M})$ -Luzin set:

 $|X| \geq {\sf cov}(\mathcal{M})$ and $|X \cap M| < {\sf cov}(\mathcal{M})$ for every meager M

Observation

 $S_1(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \dots$ of open covers of X there are $\mathcal{O}_1 \in \mathcal{O}_1, \mathcal{O}_2 \in \mathcal{O}_2, \dots$ such that $X \subseteq \bigcup_n \mathcal{O}_n$

$$|X| < \mathsf{cov}(\mathcal{M}) \Rightarrow X \text{ is } \mathsf{S}_1(\mathcal{O},\mathcal{O})$$

 $cov(\mathcal{M})$ -Luzin set:

 $|X| \geq {\sf cov}(\mathcal{M})$ and $|X \cap M| < {\sf cov}(\mathcal{M})$ for every meager M

Observation

A cov(\mathcal{M})-Luzin set is S₁(\mathcal{O}, \mathcal{O})

• Assume that $\mathbb{Q} \subseteq X$

 $S_1(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \dots$ of open covers of X there are $\mathcal{O}_1 \in \mathcal{O}_1, \mathcal{O}_2 \in \mathcal{O}_2, \dots$ such that $X \subseteq \bigcup_n \mathcal{O}_n$

$$|X| < \mathsf{cov}(\mathcal{M}) \Rightarrow X ext{ is } \mathsf{S}_1(\mathcal{O},\mathcal{O})$$

 $cov(\mathcal{M})$ -Luzin set:

 $|X| \geq {\sf cov}(\mathcal{M})$ and $|X \cap M| < {\sf cov}(\mathcal{M})$ for every meager M

Observation

A cov(\mathcal{M})-Luzin set is $S_1(\mathcal{O}, \mathcal{O})$

$$\mathcal{O}_1, \qquad \mathcal{O}_2, \qquad \mathcal{O}_3, \qquad \mathcal{O}_4, \ldots$$

• Assume that $\mathbb{Q} \subseteq X$

 $S_1(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \dots$ of open covers of X there are $\mathcal{O}_1 \in \mathcal{O}_1, \mathcal{O}_2 \in \mathcal{O}_2, \dots$ such that $X \subseteq \bigcup_n \mathcal{O}_n$

$$|X| < \mathsf{cov}(\mathcal{M}) \Rightarrow X ext{ is } \mathsf{S}_1(\mathcal{O},\mathcal{O})$$

 $cov(\mathcal{M})$ -Luzin set:

 $|X| \geq {\sf cov}(\mathcal{M})$ and $|X \cap M| < {\sf cov}(\mathcal{M})$ for every meager M

Observation

- $O_1 \in O_1, \qquad O_2, O_3 \in O_3, \qquad O_4, \ldots$
- Assume that $\mathbb{Q} \subseteq X$
- $\mathbb{Q} \subseteq O := \bigcup_n O_{2n-1}$

 $S_1(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of open covers of X there are $\mathcal{O}_1 \in \mathcal{O}_1, \mathcal{O}_2 \in \mathcal{O}_2, \ldots$ such that $X \subseteq \bigcup_n \mathcal{O}_n$

$$|X| < \mathsf{cov}(\mathcal{M}) \Rightarrow X ext{ is } \mathsf{S}_1(\mathcal{O},\mathcal{O})$$

 $cov(\mathcal{M})$ -Luzin set:

 $|X| \geq {\sf cov}(\mathcal{M})$ and $|X \cap M| < {\sf cov}(\mathcal{M})$ for every meager M

Observation

- $O_1 \in O_1, \qquad O_2, O_3 \in O_3, \qquad O_4, \ldots$
- Assume that $\mathbb{Q} \subseteq X$
- $\mathbb{Q} \subseteq O := \bigcup_n O_{2n-1}$
- $X \setminus O$ is meager

 $S_1(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \dots$ of open covers of X there are $\mathcal{O}_1 \in \mathcal{O}_1, \mathcal{O}_2 \in \mathcal{O}_2, \dots$ such that $X \subseteq \bigcup_n \mathcal{O}_n$

$$|X| < \mathsf{cov}(\mathcal{M}) \Rightarrow X \text{ is } \mathsf{S}_1(\mathcal{O},\mathcal{O})$$

 $cov(\mathcal{M})$ -Luzin set:

 $|X| \geq {\sf cov}(\mathcal{M})$ and $|X \cap M| < {\sf cov}(\mathcal{M})$ for every meager M

Observation

- $O_1 \in O_1, \qquad O_2, O_3 \in O_3, \qquad O_4, \ldots$
- Assume that $\mathbb{Q} \subseteq X$
- $\mathbb{Q} \subseteq O := \bigcup_n O_{2n-1}$
- $X \setminus O$ is meager $\Rightarrow |X \setminus O| < \mathsf{cov}(\mathcal{M})$

 $S_1(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \dots$ of open covers of X there are $\mathcal{O}_1 \in \mathcal{O}_1, \mathcal{O}_2 \in \mathcal{O}_2, \dots$ such that $X \subseteq \bigcup_n \mathcal{O}_n$

$$|X| < \mathsf{cov}(\mathcal{M}) \Rightarrow X ext{ is } \mathsf{S}_1(\mathcal{O},\mathcal{O})$$

 $cov(\mathcal{M})$ -Luzin set:

 $|X| \geq {\sf cov}(\mathcal{M})$ and $|X \cap M| < {\sf cov}(\mathcal{M})$ for every meager M

Observation

- $O_1 \in O_1, \qquad O_2, O_3 \in O_3, \qquad O_4, \ldots$
- Assume that $\mathbb{Q} \subseteq X$
- $\mathbb{Q} \subseteq O := \bigcup_n O_{2n-1}$
- $X \setminus O$ is meager $\Rightarrow |X \setminus O| < \mathsf{cov}(\mathcal{M}) \Rightarrow X \setminus O$ is $\mathsf{S}_1(\mathcal{O}, \mathcal{O})$

 $S_1(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \dots$ of open covers of X there are $\mathcal{O}_1 \in \mathcal{O}_1, \mathcal{O}_2 \in \mathcal{O}_2, \dots$ such that $X \subseteq \bigcup_n \mathcal{O}_n$

$$|X| < \mathsf{cov}(\mathcal{M}) \Rightarrow X ext{ is } \mathsf{S}_1(\mathcal{O},\mathcal{O})$$

 $cov(\mathcal{M})$ -Luzin set:

 $|X| \geq {\sf cov}(\mathcal{M})$ and $|X \cap M| < {\sf cov}(\mathcal{M})$ for every meager M

Observation

A cov(\mathcal{M})-Luzin set is $S_1(\mathcal{O}, \mathcal{O})$

 $O_1 \in \mathcal{O}_1, O_2 \in \mathcal{O}_2, O_3 \in \mathcal{O}_3, O_4 \in \mathcal{O}_4, \ldots$

- Assume that $\mathbb{Q} \subseteq X$
- $\mathbb{Q} \subseteq O := \bigcup_n O_{2n-1}$
- $X \setminus O$ is meager $\Rightarrow |X \setminus O| < \mathsf{cov}(\mathcal{M}) \Rightarrow X \setminus O$ is $\mathsf{S}_1(\mathcal{O}, \mathcal{O})$
- $X \setminus O \subseteq \bigcup_n O_{2n}$

 $S_1(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of open covers of X there are $\mathcal{O}_1 \in \mathcal{O}_1, \mathcal{O}_2 \in \mathcal{O}_2, \ldots$ such that $X \subseteq \bigcup_n \mathcal{O}_n$

$$|X| < \mathsf{cov}(\mathcal{M}) \Rightarrow X ext{ is } \mathsf{S}_1(\mathcal{O},\mathcal{O})$$

 $cov(\mathcal{M})$ -Luzin set:

 $|X| \geq {\sf cov}(\mathcal{M})$ and $|X \cap M| < {\sf cov}(\mathcal{M})$ for every meager M

Observation

A cov(\mathcal{M})-Luzin set is $S_1(\mathcal{O}, \mathcal{O})$

 $O_1 \in \mathcal{O}_1, O_2 \in \mathcal{O}_2, O_3 \in \mathcal{O}_3, O_4 \in \mathcal{O}_4, \ldots$

- Assume that $\mathbb{Q} \subseteq X$
- $\mathbb{Q} \subseteq O := \bigcup_n O_{2n-1}$
- $X \setminus O$ is meager $\Rightarrow |X \setminus O| < \mathsf{cov}(\mathcal{M}) \Rightarrow X \setminus O$ is $\mathsf{S}_1(\mathcal{O}, \mathcal{O})$
- $X \setminus O \subseteq \bigcup_n O_{2n}$
- $X \subseteq \bigcup_n O_n$

Theorem (Just, Miller, Scheepers, Szeptycki $(cov(\mathcal{M}) = \mathfrak{c}))$

There is a $cov(\mathcal{M})$ -Luzin set L such that L^n is $S_1(\mathcal{O}, \mathcal{O})$ for all n.

Theorem (Just, Miller, Scheepers, Szeptycki $(cov(\mathcal{M}) = \mathfrak{c}))$

There is a $cov(\mathcal{M})$ -Luzin set L such that L^n is $S_1(\mathcal{O}, \mathcal{O})$ for all n.

ω-cover: $X \notin O$ and for every finite F ⊆ X there is O ∈ O with F ⊆ O

Theorem (Just, Miller, Scheepers, Szeptycki $(cov(\mathcal{M}) = \mathfrak{c}))$

There is a $cov(\mathcal{M})$ -Luzin set L such that L^n is $S_1(\mathcal{O}, \mathcal{O})$ for all n.

 ω -cover: $X \notin \mathcal{O}$ and for every finite $F \subseteq X$ there is $\mathcal{O} \in \mathcal{O}$ with $F \subseteq \mathcal{O}$

 $S_1(\Omega, \Omega)$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of open ω -covers of X there are sets $\mathcal{O}_1 \in \mathcal{O}_1, \mathcal{O}_2 \in \mathcal{O}_2, \ldots$ such that $\{\mathcal{O}_n : n \in \mathbb{N}\}$ is an ω -cover

Theorem (Just, Miller, Scheepers, Szeptycki $(cov(\mathcal{M}) = \mathfrak{c}))$

There is a $cov(\mathcal{M})$ -Luzin set L such that L^n is $S_1(\mathcal{O}, \mathcal{O})$ for all n.

 ω -cover: $X \notin \mathcal{O}$ and for every finite $F \subseteq X$ there is $\mathcal{O} \in \mathcal{O}$ with $F \subseteq \mathcal{O}$

 $S_1(\Omega, \Omega)$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of open ω -covers of X there are sets $\mathcal{O}_1 \in \mathcal{O}_1, \mathcal{O}_2 \in \mathcal{O}_2, \ldots$ such that $\{ \mathcal{O}_n : n \in \mathbb{N} \}$ is an ω -cover

Sakai: X^n is $S_1(\mathcal{O}, \mathcal{O})$ for all $n \Leftrightarrow X$ is $S_1(\Omega, \Omega)$

Theorem (Just, Miller, Scheepers, Szeptycki ($\mathsf{cov}(\mathcal{M}) = \mathfrak{c}$))

There is a $cov(\mathcal{M})$ -Luzin set L such that L^n is $S_1(\mathcal{O}, \mathcal{O})$ for all n.

 ω -cover: $X \notin \mathcal{O}$ and for every finite $F \subseteq X$ there is $\mathcal{O} \in \mathcal{O}$ with $F \subseteq \mathcal{O}$

 $S_1(\Omega, \Omega)$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of open ω -covers of X there are sets $\mathcal{O}_1 \in \mathcal{O}_1, \mathcal{O}_2 \in \mathcal{O}_2, \ldots$ such that $\{ \mathcal{O}_n : n \in \mathbb{N} \}$ is an ω -cover

Sakai: X^n is $S_1(\mathcal{O}, \mathcal{O})$ for all $n \Leftrightarrow X$ is $S_1(\Omega, \Omega)$

• A topological proof, no chance to weaken assumptions with a similar construction.

Theorem (Just, Miller, Scheepers, Szeptycki $(cov(\mathcal{M}) = \mathfrak{c}))$

There is a $cov(\mathcal{M})$ -Luzin set L such that L^n is $S_1(\mathcal{O}, \mathcal{O})$ for all n.

 ω -cover: $X \notin \mathcal{O}$ and for every finite $F \subseteq X$ there is $\mathcal{O} \in \mathcal{O}$ with $F \subseteq \mathcal{O}$

 $S_1(\Omega, \Omega)$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of open ω -covers of X there are sets $\mathcal{O}_1 \in \mathcal{O}_1, \mathcal{O}_2 \in \mathcal{O}_2, \ldots$ such that $\{ \mathcal{O}_n : n \in \mathbb{N} \}$ is an ω -cover

Sakai: X^n is $S_1(\mathcal{O}, \mathcal{O})$ for all $n \Leftrightarrow X$ is $S_1(\Omega, \Omega)$

- A topological proof, no chance to weaken assumptions with a similar construction.
- $\operatorname{cov}(\mathcal{M}) = \operatorname{cof}(\mathcal{M})$ is enough to construct a $\operatorname{cov}(\mathcal{M})$ -Luzin set

Theorem (Just, Miller, Scheepers, Szeptycki $(cov(\mathcal{M}) = \mathfrak{c}))$

There is a cov(\mathcal{M})-Luzin set L such that Lⁿ is S₁(\mathcal{O}, \mathcal{O}) for all n.

 ω -cover: $X \notin \mathcal{O}$ and for every finite $F \subseteq X$ there is $\mathcal{O} \in \mathcal{O}$ with $F \subseteq \mathcal{O}$

 $S_1(\Omega, \Omega)$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of open ω -covers of X there are sets $\mathcal{O}_1 \in \mathcal{O}_1, \mathcal{O}_2 \in \mathcal{O}_2, \ldots$ such that $\{ \mathcal{O}_n : n \in \mathbb{N} \}$ is an ω -cover

Sakai: X^n is $S_1(\mathcal{O}, \mathcal{O})$ for all $n \Leftrightarrow X$ is $S_1(\Omega, \Omega)$

- A topological proof, no chance to weaken assumptions with a similar construction.
- $\operatorname{cov}(\mathcal{M}) = \operatorname{cof}(\mathcal{M})$ is enough to construct a $\operatorname{cov}(\mathcal{M})$ -Luzin set

Goal: find a new construction and improve the theorem

Combinatorics

The Cantor space: $P(\mathbb{N}) \approx \{0,1\}^{\mathbb{N}} \approx \text{Cantor set} \subseteq \mathbb{R}$

The Cantor space: $P(\mathbb{N}) \approx \{0,1\}^{\mathbb{N}} \approx \text{Cantor set} \subseteq \mathbb{R}$ $P(\mathbb{N}) = \text{Fin} \cup [\mathbb{N}]^{\infty}$

The Cantor space: $P(\mathbb{N}) \approx \{0,1\}^{\mathbb{N}} \approx \text{Cantor set} \subseteq \mathbb{R}$ $P(\mathbb{N}) = Fin \cup [\mathbb{N}]^{\infty}$

• $[\mathbb{N}]^{\infty} \supseteq U$: a nonprincipal ultrafilter

The Cantor space: $\mathrm{P}(\mathbb{N}) \approx \{0,1\}^{\mathbb{N}} \approx \text{Cantor set} \subseteq \mathbb{R}$

 $P(\mathbb{N}) = Fin \cup [\mathbb{N}]^{\infty}$

• $[\mathbb{N}]^{\infty} \supseteq U$: a nonprincipal ultrafilter

• For $x, y \in [\mathbb{N}]^{\infty}$, $x \leq_U y$ if $\{ n : x(n) \leq y(n) \} \in U$

The Cantor space: $\mathrm{P}(\mathbb{N}) \approx \{0,1\}^{\mathbb{N}} \approx \mathsf{Cantor} \ \mathsf{set} \subseteq \mathbb{R}$

 $\mathrm{P}(\mathbb{N}) = \mathrm{Fin} \cup [\mathbb{N}]^\infty$

- $[\mathbb{N}]^{\infty} \supseteq U$: a nonprincipal ultrafilter
- For $x, y \in [\mathbb{N}]^{\infty}$, $x \leq_U y$ if $\{n : x(n) \leq y(n)\} \in U$
- $\mathfrak{b}(U)$: minimal cardinality of a \leq_{U} -<u>un</u>bounded set

The Cantor space: $\mathrm{P}(\mathbb{N})\approx\{0,1\}^{\mathbb{N}}\approx\mathsf{Cantor}$ set $\subseteq\mathbb{R}$

 $\mathrm{P}(\mathbb{N}) = \mathrm{Fin} \cup [\mathbb{N}]^\infty$

- $[\mathbb{N}]^{\infty} \supseteq U$: a nonprincipal ultrafilter
- For $x, y \in [\mathbb{N}]^{\infty}$, $x \leq_U y$ if $\{ n : x(n) \leq y(n) \} \in U$
- $\mathfrak{b}(U)$: minimal cardinality of a \leq_{U} -<u>un</u>bounded set
- $[\mathbb{N}]^{\infty} \supseteq \{ x_{\alpha} : \alpha < \mathfrak{b}(U) \}$ is a *U*-scale if

$$\forall_{\alpha < \beta} x_{\alpha} \leq_U x_{\beta}, \qquad \forall_{z \in [\mathbb{N}]^{\infty}} \exists_{\alpha} z \leq_U x_{\alpha}$$

The Cantor space: $\mathrm{P}(\mathbb{N}) \approx \{0,1\}^{\mathbb{N}} \approx \text{Cantor set} \subseteq \mathbb{R}$

 $\mathrm{P}(\mathbb{N}) = \mathrm{Fin} \cup [\mathbb{N}]^{\infty}$

- $[\mathbb{N}]^{\infty} \supseteq U$: a nonprincipal ultrafilter
- For $x, y \in [\mathbb{N}]^{\infty}$, $x \leq_U y$ if $\{ n : x(n) \leq y(n) \} \in U$
- $\mathfrak{b}(U)$: minimal cardinality of a \leq_{U} -<u>un</u>bounded set
- $[\mathbb{N}]^{\infty} \supseteq \{ x_{\alpha} : \alpha < \mathfrak{b}(U) \}$ is a *U*-scale if

$$\forall_{\alpha < \beta} \ x_{\alpha} \leq_U x_{\beta}, \qquad \forall_{z \in [\mathbb{N}]^{\infty}} \exists_{\alpha} \ z \leq_U x_{\alpha}$$

Lemma (Sz, Tsaban, Zdomskyy)

Assume that U is an ultrafilter such that $\mathfrak{b}(U) = \operatorname{cov}(\mathcal{M})$. For a U-scale X the set $(X \cup \operatorname{Fin})^n$ is $S_1(\mathcal{O}, \mathcal{O})$ for all n.

The Cantor space: $\mathrm{P}(\mathbb{N})\approx\{0,1\}^{\mathbb{N}}\approx\mathsf{Cantor}$ set $\subseteq\mathbb{R}$

 $\mathrm{P}(\mathbb{N}) = \mathrm{Fin} \cup [\mathbb{N}]^{\infty}$

- $[\mathbb{N}]^{\infty} \supseteq U$: a nonprincipal ultrafilter
- For $x, y \in [\mathbb{N}]^{\infty}$, $x \leq_U y$ if $\{ n : x(n) \leq y(n) \} \in U$
- $\mathfrak{b}(U)$: minimal cardinality of a \leq_{U} -<u>un</u>bounded set
- $[\mathbb{N}]^{\infty} \supseteq \{ x_{\alpha} : \alpha < \mathfrak{b}(U) \}$ is a *U*-scale if

$$\forall_{\alpha < \beta} \ x_{\alpha} \leq_U x_{\beta}, \qquad \forall_{z \in [\mathbb{N}]^{\infty}} \exists_{\alpha} \ z \leq_U x_{\alpha}$$

Lemma (Sz, Tsaban, Zdomskyy)

Assume that U is an ultrafilter such that $\mathfrak{b}(U) = \operatorname{cov}(\mathcal{M})$. For a U-scale X the set $(X \cup \operatorname{Fin})^n$ is $S_1(\mathcal{O}, \mathcal{O})$ for all n.

• For every meager $M \subseteq [\mathbb{N}]^{\infty}$, there are a set $f \in [\mathbb{N}]^{\infty}$ and an interval partition $a \in [\mathbb{N}]^{\infty}$

 $M \subseteq \{ x \in [\mathbb{N}]^{\infty} : x \cap [a(n), a(n+1)) \neq f \cap [a(n), a(n+1)) \text{ for all but fin many } n \}$

Theorem (Sz, Wiśniewski $(cov(\mathcal{M}) = cof(\mathcal{M}))$

Assume that U is an ultrafilter and $\mathfrak{b}(U) = \operatorname{cov}(\mathcal{M})$. There is a U-scale that is a $\operatorname{cov}(\mathcal{M})$ -Luzin set.

Theorem (Sz, Wiśniewski ($cov(\mathcal{M}) = cof(\mathcal{M})$)

Assume that U is an ultrafilter and $\mathfrak{b}(U) = \operatorname{cov}(\mathcal{M})$. There is a U-scale that is a $\operatorname{cov}(\mathcal{M})$ -Luzin set.

Lemma (Sz, Wiśniewski)

Let U be an ultrafilter, $d \in [\mathbb{N}]^{\infty}$, and $\{M_{\beta} : \beta < \alpha\}$ be a family of meager sets, where $\alpha < \operatorname{cov}(\mathcal{M})$. There is $x \in [\mathbb{N}]^{\infty}$ such that $d \leq_U x$ and $x \notin \bigcup_{\beta < \alpha} M_{\beta}$.

Theorem (Sz, Wiśniewski ($cov(\mathcal{M}) = cof(\mathcal{M})$)

Assume that U is an ultrafilter and $\mathfrak{b}(U) = \operatorname{cov}(\mathcal{M})$. There is a U-scale that is a $\operatorname{cov}(\mathcal{M})$ -Luzin set.

Lemma (Sz, Wiśniewski)

Let U be an ultrafilter, $d \in [\mathbb{N}]^{\infty}$, and $\{M_{\beta} : \beta < \alpha\}$ be a family of meager sets, where $\alpha < \operatorname{cov}(\mathcal{M})$. There is $x \in [\mathbb{N}]^{\infty}$ such that $d \leq_U x$ and $x \notin \bigcup_{\beta < \alpha} M_{\beta}$.

• For $\beta < \alpha$, there are $f_{\beta}, a_{\beta} \in [\mathbb{N}]^{\infty}$ such that $M_{\beta} = \{ x \in [\mathbb{N}]^{\infty} : x \cap [a_{\beta}(n), a_{\beta}(n+1)) \neq f_{\beta} \cap [a_{\beta}(n), a_{\beta}(n+1))$ for all but finitely many $n \}$

Theorem (Sz, Wiśniewski ($cov(\mathcal{M}) = cof(\mathcal{M})$)

Assume that U is an ultrafilter and $\mathfrak{b}(U) = \operatorname{cov}(\mathcal{M})$. There is a U-scale that is a $\operatorname{cov}(\mathcal{M})$ -Luzin set.

Lemma (Sz, Wiśniewski)

Let U be an ultrafilter, $d \in [\mathbb{N}]^{\infty}$, and $\{M_{\beta} : \beta < \alpha\}$ be a family of meager sets, where $\alpha < \operatorname{cov}(\mathcal{M})$. There is $x \in [\mathbb{N}]^{\infty}$ such that $d \leq_U x$ and $x \notin \bigcup_{\beta < \alpha} M_{\beta}$.

• For
$$\beta < \alpha$$
, there are $f_{\beta}, a_{\beta} \in [\mathbb{N}]^{\infty}$ such that
 $M_{\beta} = \{ x \in [\mathbb{N}]^{\infty} : x \cap [a_{\beta}(n), a_{\beta}(n+1)) \neq f_{\beta} \cap [a_{\beta}(n), a_{\beta}(n+1))$
for all but finitely many $n \}$

• In other words, pick x such that $d \leq_U x$ and for each $\beta < \alpha$ $x \cap [a_\beta(n), a_\beta(n+1)) = f_\beta \cap [a_\beta(n), a_\beta(n+1))$ for inf many n

Theorem (Just, Miller, Scheepers, Szeptycki ($cov(\mathcal{M}) = \mathfrak{c}$))

There is a cov(\mathcal{M})-Luzin set L such that Lⁿ is S₁(\mathcal{O}, \mathcal{O}) for all n

Lemma (Sz, Tsaban, Zdomskyy)

Assume that U is an ultrafilter and $\mathfrak{b}(U) = \operatorname{cov}(\mathcal{M})$. For a U-scale X the set $(X \cup \operatorname{Fin})^n$ is $S_1(\mathcal{O}, \mathcal{O})$ for all n.

Theorem (Sz, Wiśniewski ($cov(\mathcal{M}) = cof(\mathcal{M})$)

Assume that U is an ultrafilter and $\mathfrak{b}(U) = \operatorname{cov}(\mathcal{M})$. There is a U-scale that is a $\operatorname{cov}(\mathcal{M})$ -Luzin set.

Theorem (Just, Miller, Scheepers, Szeptycki ($cov(\mathcal{M}) = \mathfrak{c}$))

There is a $cov(\mathcal{M})$ -Luzin set L such that L^n is $S_1(\mathcal{O}, \mathcal{O})$ for all n

Lemma (Sz, Tsaban, Zdomskyy)

Assume that U is an ultrafilter and $\mathfrak{b}(U) = \operatorname{cov}(\mathcal{M})$. For a U-scale X the set $(X \cup \operatorname{Fin})^n$ is $S_1(\mathcal{O}, \mathcal{O})$ for all n.

Theorem (Sz, Wiśniewski ($cov(\mathcal{M}) = cof(\mathcal{M})$)

Assume that U is an ultrafilter and $\mathfrak{b}(U) = \operatorname{cov}(\mathcal{M})$. There is a U-scale that is a $\operatorname{cov}(\mathcal{M})$ -Luzin set.

Theorem (Sz, Wiśniewski ($cov(\mathcal{M}) = cof(\mathcal{M}) + cov(\mathcal{M})$ is regular))

There is a $cov(\mathcal{M})$ -Luzin set L such that L^n is $S_1(\mathcal{O}, \mathcal{O})$ for all n.

Theorem (Just, Miller, Scheepers, Szeptycki ($cov(\mathcal{M}) = \mathfrak{c}$))

There is a cov(\mathcal{M})-Luzin set L such that Lⁿ is S₁(\mathcal{O}, \mathcal{O}) for all n

Lemma (Sz, Tsaban, Zdomskyy)

Assume that U is an ultrafilter and $\mathfrak{b}(U) = \operatorname{cov}(\mathcal{M})$. For a U-scale X the set $(X \cup \operatorname{Fin})^n$ is $S_1(\mathcal{O}, \mathcal{O})$ for all n.

Theorem (Sz, Wiśniewski ($cov(\mathcal{M}) = cof(\mathcal{M})$)

Assume that U is an ultrafilter and $\mathfrak{b}(U) = \operatorname{cov}(\mathcal{M})$. There is a U-scale that is a $\operatorname{cov}(\mathcal{M})$ -Luzin set.

Theorem (Sz, Wiśniewski ($cov(\mathcal{M}) = cof(\mathcal{M}) + cov(\mathcal{M})$ is regular))

There is a $cov(\mathcal{M})$ -Luzin set L such that L^n is $S_1(\mathcal{O}, \mathcal{O})$ for all n.

There is an ultrafilter U with $\mathfrak{b}(U) = \operatorname{cov}(\mathcal{M})$.

Theorem (Just, Miller, Scheepers, Szeptycki ($cov(\mathcal{M}) = \mathfrak{c}$))

There is a cov(\mathcal{M})-Luzin set L such that Lⁿ is S₁(\mathcal{O}, \mathcal{O}) for all n

Lemma (Sz, Tsaban, Zdomskyy)

Assume that U is an ultrafilter and $\mathfrak{b}(U) = \operatorname{cov}(\mathcal{M})$. For a U-scale X the set $(X \cup \operatorname{Fin})^n$ is $S_1(\mathcal{O}, \mathcal{O})$ for all n.

Theorem (Sz, Wiśniewski ($cov(\mathcal{M}) = cof(\mathcal{M})$)

Assume that U is an ultrafilter and $\mathfrak{b}(U) = \operatorname{cov}(\mathcal{M})$. There is a U-scale that is a $\operatorname{cov}(\mathcal{M})$ -Luzin set.

Theorem (Sz, Wiśniewski ($cov(\mathcal{M}) = cof(\mathcal{M}) + cov(\mathcal{M})$ is regular))

There is a $cov(\mathcal{M})$ -Luzin set L such that L^n is $S_1(\mathcal{O}, \mathcal{O})$ for all n.

There is an ultrafilter U with $\mathfrak{b}(U) = \operatorname{cov}(\mathcal{M})$. Take $L = X \cup \operatorname{Fin}$.

 $S_{\operatorname{fin}}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of open covers of X there are finite $\mathcal{F}_1 \subseteq \mathcal{O}_1, \mathcal{F}_2 \subseteq \mathcal{O}_2, \ldots$ such that $\mathcal{F}_1 \cup \mathcal{F}_2 \cup \ldots$ covers X

 $\mathsf{S}_{\mathrm{fin}}(\mathcal{O},\mathcal{O}) \longrightarrow \mathsf{Lindel\"of}$

$$\mathsf{S}_{\mathrm{fin}}(\mathcal{O},\mathcal{O}) \xrightarrow{\longleftarrow} \mathsf{Lindelöf}$$

 $S_{\operatorname{fin}}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of open covers of X there are finite $\mathcal{F}_1 \subseteq \mathcal{O}_1, \mathcal{F}_2 \subseteq \mathcal{O}_2, \ldots$ such that $\mathcal{F}_1 \cup \mathcal{F}_2 \cup \ldots$ covers X

 σ -compact $\longrightarrow \mathsf{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O}) \xrightarrow{\longleftarrow} \mathsf{Lindelöf}$

$$\sigma\text{-compact} \xrightarrow{\longleftarrow} \mathsf{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O}) \xrightarrow{\longleftarrow} \mathsf{Lindelöf}$$

$$\sigma\text{-compact} \xrightarrow{\longleftarrow} \mathsf{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O}) \xrightarrow{\longleftarrow} \mathsf{Lindelöf}$$

$$\uparrow \\ \mathsf{S}_1(\mathcal{O}, \mathcal{O})$$

$$\sigma\text{-compact} \xrightarrow{\longleftarrow} \mathsf{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O}) \xrightarrow{\longleftarrow} \mathsf{Lindel\"of}$$
$$\uparrow \!\!\!\! \downarrow \\ \mathsf{S}_1(\mathcal{O}, \mathcal{O})$$

 $S_{\operatorname{fin}}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of open covers of X there are finite $\mathcal{F}_1 \subseteq \mathcal{O}_1, \mathcal{F}_2 \subseteq \mathcal{O}_2, \ldots$ such that $\mathcal{F}_1 \cup \mathcal{F}_2 \cup \ldots$ covers X

•
$$\mathbb{N}^{\mathbb{N}} \supseteq Y$$
 is dominating if $\forall_{x \in \mathbb{N}^{\mathbb{N}}} \exists_{y \in Y} \{ n : x(n) \le y(n) \}$ is cofinite

Theorem (Recław)

X is $S_{fin}(\mathcal{O}, \mathcal{O}) \Leftrightarrow$ **no** continuous image of *X* into $\mathbb{N}^{\mathbb{N}}$ is **dominating**

 $S_{\text{fin}}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of open covers of X there are finite $\mathcal{F}_1 \subseteq \mathcal{O}_1, \mathcal{F}_2 \subseteq \mathcal{O}_2, \ldots$ such that $\mathcal{F}_1 \cup \mathcal{F}_2 \cup \ldots$ covers X

•
$$\mathbb{N}^{\mathbb{N}} \supseteq Y$$
 is dominating if $\forall_{x \in \mathbb{N}^{\mathbb{N}}} \exists_{y \in Y} \{ n : x(n) \le y(n) \}$ is cofinite

Theorem (Recław)

X is $S_{fin}(\mathcal{O}, \mathcal{O}) \Leftrightarrow$ **no** continuous image of *X* into $\mathbb{N}^{\mathbb{N}}$ is **dominating**

• \mathfrak{d} : minimal cardinality of a dominating set

•
$$|X| < \mathfrak{d} \Rightarrow X$$
 is $\mathsf{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$

 $S_{\text{fin}}(\mathcal{O}, \mathcal{O})$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of open covers of X there are finite $\mathcal{F}_1 \subseteq \mathcal{O}_1, \mathcal{F}_2 \subseteq \mathcal{O}_2, \ldots$ such that $\mathcal{F}_1 \cup \mathcal{F}_2 \cup \ldots$ covers X

Theorem (Bartoszyński, Shelah, Tsaban ($cov(\mathcal{M}) = \mathfrak{c}$))

There are $cov(\mathcal{M})$ -Luzin sets K, L such that

- K^n, L^n are $S_1(\mathcal{O}, \mathcal{O})$ for all n
- $K \times L$ is not $S_{fin}(\mathcal{O}, \mathcal{O})$

Theorem (Sz, Wiśniewski ($cov(\mathcal{M}) = cof(\mathcal{M}) + cov(\mathcal{M})$ is regular))

There are ultrafilters U, \overline{U} and sets X, Y such that

- X is a U-scale and a $cov(\mathcal{M})$ -Luzin set
- Y is a \widetilde{U} -scale and a cov(\mathcal{M})-Luzin set
- $(X \cup \operatorname{Fin})^n$ and $(Y \cup \operatorname{Fin})^n$ are $\mathsf{S}_1(\mathcal{O}, \mathcal{O})$ for all n
- $(X \cup \operatorname{Fin}) \times (Y \cup \operatorname{Fin})$ is not $\mathsf{S}_{\operatorname{fin}}(\mathcal{O}, \mathcal{O})$

Theorem (Sz, Wiśniewski ($cov(\mathcal{M}) = cof(\mathcal{M}) + cov(\mathcal{M})$ is regular))

There are ultrafilters U, \tilde{U} and sets X, Y such that

- X is a U-scale and a $cov(\mathcal{M})$ -Luzin set
- Y is a \widetilde{U} -scale and a cov (\mathcal{M}) -Luzin set
- $(X \cup \operatorname{Fin})^n$ and $(Y \cup \operatorname{Fin})^n$ are $\mathsf{S}_1(\mathcal{O}, \mathcal{O})$ for all n
- $(X \cup \operatorname{Fin}) \times (Y \cup \operatorname{Fin})$ is not $\mathsf{S}_{\operatorname{fin}}(\mathcal{O}, \mathcal{O})$

Theorem (Sz, Wiśniewski $(cov(\mathcal{M}) = cof(\mathcal{M}) + cov(\mathcal{M})$ is regular))

There are $cov(\mathcal{M})$ -Luzin sets K, L such that

- K^n, L^n are $S_1(\mathcal{O}, \mathcal{O})$ for all n
- $K \times L$ is not $S_{fin}(\mathcal{O}, \mathcal{O})$

Theorem (Sz, Wiśniewski ($cov(\mathcal{M}) = cof(\mathcal{M}) + cov(\mathcal{M})$ is regular))

There are ultrafilters U, \overline{U} and sets X, Y such that

- X is a U-scale and a $cov(\mathcal{M})$ -Luzin set
- Y is a \widetilde{U} -scale and a cov (\mathcal{M}) -Luzin set
- $(X \cup \operatorname{Fin})^n$ and $(Y \cup \operatorname{Fin})^n$ are $\mathsf{S}_1(\mathcal{O}, \mathcal{O})$ for all n
- $(X \cup \operatorname{Fin}) \times (Y \cup \operatorname{Fin})$ is not $\mathsf{S}_{\operatorname{fin}}(\mathcal{O}, \mathcal{O})$

Theorem (Sz, Wiśniewski $(cov(\mathcal{M}) = cof(\mathcal{M}) + cov(\mathcal{M})$ is regular))

There are $cov(\mathcal{M})$ -Luzin sets K, L such that

- K^n, L^n are $S_1(\mathcal{O}, \mathcal{O})$ for all n
- $K \times L$ is not $S_{fin}(\mathcal{O}, \mathcal{O})$

Theorem (Sz, Wiśniewski $(cov(\mathcal{M}) = cof(\mathcal{M}))$

Assume that U is an ultrafilter and $\mathfrak{b}(U) = \operatorname{cov}(\mathcal{M})$. There is a U-scale that is a $\operatorname{cov}(\mathcal{M})$ -Luzin set.

 $U_{\operatorname{fin}}(\mathcal{O},\Omega)$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of open covers of X there are finite $\mathcal{F}_1 \subseteq \mathcal{O}_1, \mathcal{F}_2 \subseteq \mathcal{O}_2, \ldots$ such that $\{\bigcup \mathcal{F}_n : n \in \mathbb{N}\}$ is an ω -cover

 $U_{\operatorname{fin}}(\mathcal{O},\Omega)$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of open covers of X there are finite $\mathcal{F}_1 \subseteq \mathcal{O}_1, \mathcal{F}_2 \subseteq \mathcal{O}_2, \ldots$ such that $\{\bigcup \mathcal{F}_n : n \in \mathbb{N}\}$ is an ω -cover

 $U_{\operatorname{fin}}(\mathcal{O},\Omega)$: for every sequence $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of open covers of X there are finite $\mathcal{F}_1 \subseteq \mathcal{O}_1, \mathcal{F}_2 \subseteq \mathcal{O}_2, \ldots$ such that $\{\bigcup \mathcal{F}_n : n \in \mathbb{N}\}$ is an ω -cover

$$\sigma\text{-compact} \longrightarrow \mathsf{U}_{\mathrm{fin}}(\mathcal{O}, \Omega) \longrightarrow \mathsf{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$$

$$\uparrow \\
\mathsf{S}_1(\mathcal{O}, \mathcal{O})$$

$$\sigma\text{-compact} \longrightarrow \mathsf{U}_{\mathrm{fin}}(\mathcal{O}, \Omega) \longrightarrow \mathsf{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$$

$$\uparrow \\ \mathsf{S}_1(\mathcal{O}, \mathcal{O})$$

Theorem (Tsaban, Zdomskyy $(\mathfrak{u} < \mathfrak{g})$)

 $\mathsf{U}_{\mathrm{fin}}(\mathcal{O},\Omega)=\mathsf{S}_{\mathrm{fin}}(\mathcal{O},\mathcal{O})$

Theorem (Tsaban, Zdomskyy $(\mathfrak{u} < \mathfrak{g})$) $\mathsf{U}_{\mathrm{fin}}(\mathcal{O}, \Omega) = \mathsf{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$

Theorem (Scheepers, Tsaban ($cov(\mathcal{M}) = cof(\mathcal{M}))$)

There is a $cov(\mathcal{M})$ -Luzin set (and thus $S_1(\mathcal{O}, \mathcal{O})$) that is no $U_{fin}(\mathcal{O}, \Omega)$.

Theorem (Tsaban, Zdomskyy $(\mathfrak{u} < \mathfrak{g})$) $U_{fin}(\mathcal{O}, \Omega) = S_{fin}(\mathcal{O}, \mathcal{O})$

Theorem (Scheepers, Tsaban ($\mathsf{cov}(\mathcal{M}) = \mathsf{cof}(\mathcal{M})))$

There is a $cov(\mathcal{M})$ -Luzin set (and thus $S_1(\mathcal{O}, \mathcal{O})$) that is no $U_{fin}(\mathcal{O}, \Omega)$.

Theorem (Sz, Wiśniewski ($cov(\mathcal{M}) = cof(\mathcal{M}))$)

There is a $cov(\mathcal{M})$ -Luzin set (and thus $S_1(\mathcal{O}, \mathcal{O})$) that is no $U_{fin}(\mathcal{O}, \Omega)$.

 $C_p(X) := \{ \text{cont } f : X \to \mathbb{R} \}$ with pointwise convergence topology

 $C_p(X) := \{ \text{cont } f : X \to \mathbb{R} \}$ with pointwise convergence topology

How good $C_p(X)$ could be?

 $C_p(X) := \{ \text{cont } f : X \to \mathbb{R} \}$ with pointwise convergence topology

How good $C_p(\boldsymbol{X})$ could be?

 $C_p(X)$ is metrizable (or just first countable) $\Leftrightarrow X$ is countable

 $C_p(X) := \{ \text{cont } f : X \to \mathbb{R} \}$ with pointwise convergence topology

How good $C_p(X)$ could be?

 $C_p(X)$ is metrizable (or just first countable) $\Leftrightarrow X$ is countable Countable strong fan tightness: for every sequence A_1, A_2, \ldots and $z \in \bigcap_n \overline{A_n}$, there are $a_1 \in A_1, a_2 \in A_2, \ldots$ such that $z \in \{a_n : n \in \mathbb{N}\}$.

 $C_p(X) := \{ \text{cont } f : X \to \mathbb{R} \}$ with pointwise convergence topology

How good $C_p(X)$ could be?

 $C_p(X)$ is metrizable (or just first countable) $\Leftrightarrow X$ is countable Countable strong fan tightness: for every sequence A_1, A_2, \ldots and $z \in \bigcap_n \overline{A_n}$, there are $a_1 \in A_1, a_2 \in A_2, \ldots$ such that $z \in \overline{\{a_n : n \in \mathbb{N}\}}$. Countable fan tightness: for every sequence A_1, A_2, \ldots and $z \in \bigcap_n \overline{A_n}$, there are finite $F_1 \subseteq A_1, F_2 \subseteq A_2, \ldots$ such that $z \in \overline{\bigcup_n F_n}$.

Theorem (Sakai; Just, Miller, Scheepers, Szeptycki)

 $\mathsf{C}_p(X)$ has countable strong fan tightness $\Leftrightarrow X^n$ is $\mathsf{S}_1(\mathcal{O},\mathcal{O})$ for all n

 $\mathsf{C}_{\mathsf{p}}(X)$ has countable fan tightness $\Leftrightarrow X^n$ is $\mathsf{S}_{\mathrm{fin}}(\mathcal{O},\mathcal{O})$ for all n

Theorem (Sakai; Just, Miller, Scheepers, Szeptycki)

 $\mathsf{C}_p(X)$ has countable strong fan tightness $\Leftrightarrow X^n$ is $\mathsf{S}_1(\mathcal{O},\mathcal{O})$ for all n

 $\mathsf{C}_{\mathsf{p}}(X)$ has countable fan tightness $\Leftrightarrow X^n$ is $\mathsf{S}_{\mathrm{fin}}(\mathcal{O},\mathcal{O})$ for all n

Theorem (Sz, Wiśniewski ($\mathsf{cov}(\mathcal{M}) = \mathsf{cof}(\mathcal{M}) + \mathsf{cov}(\mathcal{M})$ is regular))

There are $cov(\mathcal{M})$ -Luzin sets X, Y such that

- X^n, Y^n are $S_1(\mathcal{O}, \mathcal{O})$ for all n
- $X \times Y$ is not $\mathsf{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$

Theorem (Sakai; Just, Miller, Scheepers, Szeptycki)

 $\mathsf{C}_p(X)$ has countable strong fan tightness $\Leftrightarrow X^n$ is $\mathsf{S}_1(\mathcal{O},\mathcal{O})$ for all n

 $\mathsf{C}_{\mathsf{p}}(X)$ has countable fan tightness $\Leftrightarrow X^n$ is $\mathsf{S}_{\mathrm{fin}}(\mathcal{O},\mathcal{O})$ for all n

Theorem (Sz, Wiśniewski ($\mathsf{cov}(\mathcal{M}) = \mathsf{cof}(\mathcal{M}) + \mathsf{cov}(\mathcal{M})$ is regular))

There are $cov(\mathcal{M})$ -Luzin sets X, Y such that

- X^n, Y^n are $S_1(\mathcal{O}, \mathcal{O})$ for all n
- $X \times Y$ is not $\mathsf{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$

Corollary $(cov(\mathcal{M}) = cof(\mathcal{M}) + cov(\mathcal{M})$ is regular))

There are $cov(\mathcal{M})$ -Luzin sets X, Y such that

- $C_p(X)$, $C_p(Y)$ have countable strong fan tightness
- $C_p(X) \times C_p(Y)$ does not have countable fan tightness

Theorem (Sakai; Just, Miller, Scheepers, Szeptycki)

 $\mathsf{C}_p(X)$ has countable strong fan tightness $\Leftrightarrow X^n$ is $\mathsf{S}_1(\mathcal{O},\mathcal{O})$ for all n

 $\mathsf{C}_{\mathsf{p}}(X)$ has countable fan tightness $\Leftrightarrow X^n$ is $\mathsf{S}_{\mathrm{fin}}(\mathcal{O},\mathcal{O})$ for all n

Theorem (Sz, Wiśniewski ($\mathsf{cov}(\mathcal{M}) = \mathsf{cof}(\mathcal{M}) + \mathsf{cov}(\mathcal{M})$ is regular))

There are $cov(\mathcal{M})$ -Luzin sets X, Y such that

- X^n, Y^n are $S_1(\mathcal{O}, \mathcal{O})$ for all n
- $X \times Y$ is not $\mathsf{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$

Corollary $(cov(\mathcal{M}) = cof(\mathcal{M}) + cov(\mathcal{M})$ is regular))

There are $cov(\mathcal{M})$ -Luzin sets X, Y such that

- $C_p(X)$, $C_p(Y)$ have countable strong fan tightness
- $C_p(X) \times C_p(Y)$ does not have countable fan tightness

 $C_p(X) \times C_p(Y) \approx C_p(X \sqcup Y),$

Theorem (Sakai; Just, Miller, Scheepers, Szeptycki)

 $\mathsf{C}_p(X)$ has countable strong fan tightness $\Leftrightarrow X^n$ is $\mathsf{S}_1(\mathcal{O},\mathcal{O})$ for all n

 $\mathsf{C}_{\mathsf{p}}(X)$ has countable fan tightness $\Leftrightarrow X^n$ is $\mathsf{S}_{\mathrm{fin}}(\mathcal{O},\mathcal{O})$ for all n

Theorem (Sz, Wiśniewski ($\mathsf{cov}(\mathcal{M}) = \mathsf{cof}(\mathcal{M}) + \mathsf{cov}(\mathcal{M})$ is regular))

There are $cov(\mathcal{M})$ -Luzin sets X, Y such that

• X^n, Y^n are $S_1(\mathcal{O}, \mathcal{O})$ for all n

• $X \times Y$ is not $\mathsf{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$

Corollary $(cov(\mathcal{M}) = cof(\mathcal{M}) + cov(\mathcal{M})$ is regular))

There are $cov(\mathcal{M})$ -Luzin sets X, Y such that

- $C_p(X)$, $C_p(Y)$ have countable strong fan tightness
- $C_p(X) \times C_p(Y)$ does not have countable fan tightness

 $C_p(X) \times C_p(Y) \approx C_p(X \sqcup Y), \qquad X \times Y \subseteq (X \sqcup Y)^2$

Comments

Theorem (Sz, Wiśniewski $(cov(\mathcal{M}) = cof(\mathcal{M}) + cov(\mathcal{M})$ is regular))

There are $cov(\mathcal{M})$ -Luzin sets X, Y such that

- X^n, Y^n are $S_1(\mathcal{O}, \mathcal{O})$ for all n
- $X \times Y$ is not $S_{fin}(\mathcal{O}, \mathcal{O})$

Theorem (Scheepers, Tsaban; Sz, Wiśniewski $(cov(\mathcal{M}) = cof(\mathcal{M})))$

There is a $cov(\mathcal{M})$ -Luzin set (and thus $S_1(\mathcal{O}, \mathcal{O})$) that is no $U_{fin}(\mathcal{O}, \Omega)$.

Comments

Theorem (Sz, Wiśniewski ($cov(\mathcal{M}) = cof(\mathcal{M}) + cov(\mathcal{M})$ is regular))

There are $cov(\mathcal{M})$ -Luzin sets X, Y such that

- X^n, Y^n are $S_1(\mathcal{O}, \mathcal{O})$ for all n
- $X \times Y$ is not $S_{fin}(\mathcal{O}, \mathcal{O})$

Theorem (Scheepers, Tsaban; Sz, Wiśniewski $(cov(\mathcal{M}) = cof(\mathcal{M})))$ There is a $cov(\mathcal{M})$ -Luzin set (and thus $S_1(\mathcal{O}, \mathcal{O}))$ that is no $U_{fin}(\mathcal{O}, \Omega)$.

What about just sets with the above properties?

Comments

Theorem (Sz, Wiśniewski ($cov(\mathcal{M}) = cof(\mathcal{M}) + cov(\mathcal{M})$ is regular))

There are $cov(\mathcal{M})$ -Luzin sets X, Y such that

- X^n, Y^n are $S_1(\mathcal{O}, \mathcal{O})$ for all n
- $X \times Y$ is not $S_{fin}(\mathcal{O}, \mathcal{O})$

Theorem (Scheepers, Tsaban; Sz, Wiśniewski $(cov(\mathcal{M}) = cof(\mathcal{M})))$ There is a $cov(\mathcal{M})$ -Luzin set (and thus $S_1(\mathcal{O}, \mathcal{O}))$ that is no $U_{fin}(\mathcal{O}, \Omega)$.

Theorem (Sz, Tsaban, Zdomskyy ($\mathsf{cov}(\mathcal{M}) = \mathfrak{d} + \mathfrak{d}$ is regular))

There are sets X, Y such that

•
$$X^n, Y^n$$
 are $S_1(\mathcal{O}, \mathcal{O})$ for all n

• $X \times Y$ is not $S_{fin}(\mathcal{O}, \mathcal{O})$

Theorem (Sz, Tsaban, Zdomskyy $(cov(\mathcal{M}) = \mathfrak{d}))$

There is a set that is $S_1(\mathcal{O}, \mathcal{O})$ but no $U_{fin}(\mathcal{O}, \Omega)$.