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Summable ideal:

1
Ty ={AC w: Z— < oo}
iea
Density ideal:
Z={ACw:d(A) =0},

where
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LSC sottomisura.

Consider a function ¢: P(w) — [0, o0] such that for each A, B
©(0) =0,
p(AUB) < p(A) +¢(B),
©(A) < p(B) whenever A C B,
limp— 00 (AN N) = p(A).

Such functions are called LSC submeasures.
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Teorema di Solecki.

» Let ¢ be a LSC submeasure (taking finite values on finite
sets). Define
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Theorem (Solecki) For every analytic P-ideal there is an
LSC submeasure ¢ such that

7 = Exh(y).
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limp 00 ®(7po,... 5 (X)) = P(x).

But we will call them nice extended norms.

Nice extended norm = norm on R“ which may attain infinite values and
which is compatible with the topological structure of R¥.
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Let ® be a nice extended norm.
Fin(®) = {x € R¥: ®(x) < oo}.
Exh(®) = {x € R¥: lim, ®(m,\,(x)) = 0}.

Teorema (Solecki) For every analytic P-ideal Z there is an
LSC submeasure ¢ such that

7 = Exh(yp).

Teorema For every Banach space X with unconditional basis
there is a nice extended norm & such that

X = Exh(®).
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R /Exh(®) is Borel reducible to R¥//.
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Theorem Let ® be a nice extended norm. TFAE
Exh(®) is F, (in the product topology of R¥);
Exh(®) = Fin(P);

Exh(®) does not contain an isomorphic copy of ¢;
Fin(®) is separable;
R /Exh(®) is Borel reducible to R //.

In fact, many of the above implications was known before, in a
different language (Bessaga-Petczyriski, Drewnowski-Labuda, Ding
and others).






Concluzioni

Pretensious conslusions
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are continuous versions of F, P-ideals.

OK, but do we obtain something more than fancy general
statements? |I'm not sure.
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A nice norm + x € R¥ gives you a natural LSC submeasure.
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Funzione peso

“A nice norm + x € R¥ = LSC submeasure”.
Usually we will choose very particular “x":

w=(1,1/2,1/2,1/4,--- 1/4,1/8,--- ,1/8,---).

4 times 8 times

Why such w?

w converges to 0;
w is not summable;
w is the best sequence with the above properties (imho)

if we switch from w to 2<% in the most natural way then this
choice becomes obvious.
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Molte grazie per la corteze attenzione.
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