
Secret connections between analytic P-ideals and
Banach spaces

Piotr Borodulin-Nadzieja

Wroc law 2018

joint work with Barnabas Farkas



Ideali su ω.

I I is an ideal on ω;

I I can be treated as a subset of 2ω(via A 7→ χA);

I I is a P-ideal if for each (An) from I, there is A ∈ I such
that An ⊆∗ A for every n.
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Consider a function ϕ : P(ω)→ [0,∞] such that for each A, B

I ϕ(∅) = 0,

I ϕ(A ∪ B) ≤ ϕ(A) + ϕ(B),

I ϕ(A) ≤ ϕ(B) whenever A ⊆ B,

I limn→∞ ϕ(A ∩ n) = ϕ(A).
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I Let ϕ be a LSC submeasure (taking finite values on finite
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I Let Φ be a nice extended norm (taking finite values on
sequences with finite support).
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Theorem Let Φ be a nice extended norm. TFAE

I Exh(Φ) is Fσ (in the product topology of Rω);

I Exh(Φ) = Fin(Φ);

I Exh(Φ) does not contain an isomorphic copy of c0;

I Fin(Φ) is separable;

I Rω/Exh(Φ) is Borel reducible to Rω/`∞.

In fact, many of the above implications was known before, in a
different language (Bessaga-Pe lczyński, Drewnowski-Labuda, Ding
and others).
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OK, but do we obtain something more than fancy general
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I w is the best sequence with the above properties (imho)

I if we switch from ω to 2<ω in the most natural way then this
choice becomes obvious.
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Ricetta per una buona norma

I Choose your favourite family F of finite subsets of ω;

I For F ∈ F and x ∈ Rω let |x |(F ) =
∑

i∈F |x(i)|;
I Define Φ(x) = supF∈F |x |(F );

I ΦF is a nice norm;

I ϕF = Φ(π.(w)) is an LSC submeasure;

F = singletons.
Exh(ΦF ) = c0.
Fin(ΦF ) = `∞.

Exh(ϕF ) = P(ω).
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Exh(ΦF ) = Schreier space.

Fin(ΦF ) = ?.
Exh(ϕF ) - density ideal.
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Example: famiglie Schreier di randanti piu alti
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∑

i∈F |x(i)|;
I Define Φ(x) = supF∈F |x |(F );

I ΦF is a nice norm;

I ϕF = Φ(π.(w)) is an LSC submeasure;

F - Schreier family of rank α.
Exh(ΦF ) = Schreier space of rank α .

Fin(ΦF ) = ?.
Exh(ϕF ) - “density ideal of rank α” (potentially interesting?)
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Example: anticatene

I Choose your favourite family F of finite subsets of ω;

I For F ∈ F and x ∈ Rω let |x |(F ) =
∑

i∈F |x(i)|;
I Define Φ(x) = supF∈F |x |(F );

I ΦF is a nice norm;

I ϕF = Φ(π.(w)) is an LSC submeasure;

F - antichain in 2<ω.
Exh(ΦF ) = ?.

Fin(ΦF ) = ? (it contains the dual space of C [0, 1])
Exh(ϕF ) - trace of null.
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Molte grazie per la corteze attenzione.
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