Secret connections between analytic P-ideals and Banach spaces

Piotr Borodulin-Nadzieja

Wrocław 2018

joint work with Barnabas Farkas

• \mathcal{I} is an ideal on ω ;

- \mathcal{I} can be treated as a subset of 2^{ω} (via $A \mapsto \chi_A$);
- I is a P-ideal if for each (A_n) from *I*, there is A ∈ *I* such that A_n ⊆^{*} A for every n.

- \mathcal{I} is an ideal on ω ;
- \mathcal{I} can be treated as a subset of 2^{ω} (via $A \mapsto \chi_A$);
- ▶ \mathcal{I} is a P-ideal if for each (A_n) from \mathcal{I} , there is $A \in \mathcal{I}$ such that $A_n \subseteq^* A$ for every n.

- \mathcal{I} is an ideal on ω ;
- \mathcal{I} can be treated as a subset of 2^{ω} (via $A \mapsto \chi_A$);
- ▶ \mathcal{I} is a P-ideal if for each (A_n) from \mathcal{I} , there is $A \in \mathcal{I}$ such that $A_n \subseteq^* A$ for every n.

- \mathcal{I} is an ideal on ω ;
- \mathcal{I} can be treated as a subset of 2^{ω} (via $A \mapsto \chi_A$);
- ▶ \mathcal{I} is a P-ideal if for each (A_n) from \mathcal{I} , there is $A \in \mathcal{I}$ such that $A_n \subseteq^* A$ for every n.

Summable ideal:

$$\mathcal{I}_{1/n} = \{A \subseteq \omega \colon \sum_{i \in A} \frac{1}{n} < \infty\}.$$

Density ideal:

$$\mathcal{Z} = \{A \subseteq \omega \colon d(A) = 0\},\$$

where

$$d(A) = \lim_{n \to \infty} \frac{|A \cap \{0, \cdots, n\}|}{n+1}.$$

Summable ideal:

$$\mathcal{I}_{1/n} = \{A \subseteq \omega \colon \sum_{i \in A} \frac{1}{n} < \infty\}.$$

Density ideal:

$$\mathcal{Z} = \{A \subseteq \omega \colon d(A) = 0\},\$$

where

$$d(A) = \lim_{n \to \infty} \frac{|A \cap \{0, \cdots, n\}|}{n+1}.$$

ロトス団とスピアス団と、同一の人で

• $\varphi(\emptyset) = 0$

- $\blacktriangleright \varphi(A \cup B) \leq \varphi(A) + \varphi(B),$
- $\varphi(A) \leq \varphi(B)$ whenever $A \subseteq B$,

$$\vdash \lim_{n\to\infty}\varphi(A\cap n)=\varphi(A).$$

▶
$$\varphi(\emptyset) = 0$$
,

- $\blacktriangleright \varphi(A \cup B) \le \varphi(A) + \varphi(B),$
- $\varphi(A) \leq \varphi(B)$ whenever $A \subseteq B$,

$$\vdash \lim_{n\to\infty}\varphi(A\cap n)=\varphi(A).$$

▶
$$\varphi(\emptyset) = 0$$
,

►
$$\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$$
,

• $\varphi(A) \leq \varphi(B)$ whenever $A \subseteq B$,

$$\vdash \lim_{n\to\infty}\varphi(A\cap n)=\varphi(A).$$

▶
$$\varphi(\emptyset) = 0$$
,

▶
$$\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$$
,

- $\varphi(A) \leq \varphi(B)$ whenever $A \subseteq B$,
- $\vdash \lim_{n\to\infty}\varphi(A\cap n)=\varphi(A).$

▶
$$\varphi(\emptyset) = 0$$
,

▶
$$\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$$
,

• $\varphi(A) \leq \varphi(B)$ whenever $A \subseteq B$,

$$\vdash \lim_{n\to\infty}\varphi(A\cap n)=\varphi(A).$$

$$\varphi(\emptyset) = 0,$$
 $\varphi(A \cup B) \le \varphi(A) + \varphi(B),$
 $\varphi(A) \le \varphi(B)$ whenever $A \subseteq B,$
 $\lim_{n \to \infty} \varphi(A \cap n) = \varphi(A).$

▶
$$\varphi(\emptyset) = 0$$
,

▶
$$\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$$
,

•
$$\varphi(A) \leq \varphi(B)$$
 whenever $A \subseteq B$,

 $\vdash \lim_{n\to\infty}\varphi(A\cap n)=\varphi(A).$

 $\blacktriangleright \ \varphi(\emptyset) = 0$

- $\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$,
- $\varphi(A) \leq \varphi(B)$ whenever $A \subseteq B$

$$\vdash \lim_{n\to\infty}\varphi(A\cap n)=\varphi(A).$$

$$\varphi(\emptyset) = 0,$$
 $\varphi(A \cup B) \le \varphi(A) + \varphi(B),$
 $\varphi(A) \le \varphi(B)$ whenever $A \subseteq B,$
 $\lim_{n \to \infty} \varphi(A \cap n) = \varphi(A).$

Let φ be a LSC submeasure (taking finite values on finite sets). Define

$\blacktriangleright \quad Fin(\varphi) = \{A \subseteq \omega \colon \varphi(A) < \infty\}.$

• $\operatorname{Exh}(\varphi) = \{A \subseteq \omega \colon \lim_{n \to \infty} \varphi(A \setminus n) = 0\}.$

• Both $Fin(\varphi)$ and $Exh(\varphi)$ are analytic P-ideals.

Theorem (Solecki) For every analytic P-ideal there is an LSC submeasure φ such that

$$\mathcal{I} = \operatorname{Exh}(\varphi).$$

Let φ be a LSC submeasure (taking finite values on finite sets). Define

$$\blacktriangleright \quad Fin(\varphi) = \{A \subseteq \omega \colon \varphi(A) < \infty\}.$$

• $\operatorname{Exh}(\varphi) = \{A \subseteq \omega : \lim_{n \to \infty} \varphi(A \setminus n) = 0\}.$

- Both $Fin(\varphi)$ and $Exh(\varphi)$ are analytic P-ideals.
- Theorem (Solecki) For every analytic P-ideal there is an LSC submeasure φ such that

$$\mathcal{I} = \operatorname{Exh}(\varphi).$$

Let φ be a LSC submeasure (taking finite values on finite sets). Define

► Fin(
$$\varphi$$
) = { $A \subseteq \omega$: $\varphi(A) < \infty$ }.
► Exh(φ) = { $A \subseteq \omega$: lim_n $\varphi(A \setminus n) = 0$ }.

- Both $Fin(\varphi)$ and $Exh(\varphi)$ are analytic P-ideals.
- Theorem (Solecki) For every analytic P-ideal there is an LSC submeasure φ such that

$$\mathcal{I} = \operatorname{Exh}(\varphi).$$

Let φ be a LSC submeasure (taking finite values on finite sets). Define

► Fin(
$$\varphi$$
) = {A ⊆ ω : φ (A) < ∞}.
► Exh(φ) = {A ⊆ ω : lim_n φ (A \ n) = 0}.

• Both $Fin(\varphi)$ and $Exh(\varphi)$ are analytic P-ideals.

Theorem (Solecki) For every analytic P-ideal there is an LSC submeasure φ such that

$$\mathcal{I} = \operatorname{Exh}(\varphi).$$

Let φ be a LSC submeasure (taking finite values on finite sets). Define

Fin(
$$\varphi$$
) = {A ⊆ ω : $\varphi(A) < \infty$ }.
Exh(φ) = {A ⊆ ω : lim_n $\varphi(A \setminus n) = 0$ }

- Both $Fin(\varphi)$ and $Exh(\varphi)$ are analytic P-ideals.
- Theorem (Solecki) For every analytic P-ideal there is an LSC submeasure φ such that

$$\mathcal{I} = \mathrm{Exh}(\varphi).$$

Figure: Sławomir Solecki

Let's make it more *continuous*

 $2^{\omega} \mapsto \mathbb{R}^{\omega}$

Let's make it more *continuous*

 $2^{\omega} \mapsto \mathbb{R}^{\omega}$

Consider a function $\varphi \colon \mathcal{P}(\omega) \to [0,\infty]$ such that for each A, $B \subseteq \omega$

- ▶ $\varphi(\emptyset) = 0$,
- ▶ $\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$,
- $\varphi(A) \leq \varphi(B)$ whenever $A \subseteq B$,
- $\vdash \lim_{n\to\infty}\varphi(A\cap n)=\varphi(A).$

Such functions are called LSC submeasures.

- ▶ $\varphi(\emptyset) = 0$,
- $\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$,
- $\varphi(A) \leq \varphi(B)$ whenever $A \subseteq B$,
- $\vdash \lim_{n\to\infty}\varphi(A\cap n)=\varphi(A).$

Such functions are called

- ▶ Φ(**0**) = 0,
- ▶ $\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$,
- $\varphi(A) \leq \varphi(B)$ whenever $A \subseteq B$,
- $\vdash \lim_{n\to\infty}\varphi(A\cap n)=\varphi(A).$

Such functions are called

- ▶ Φ(**0**) = 0,
- $\Phi(x+y) \leq \Phi(x) + \Phi(y), \ \Phi(r \cdot x) = r \cdot \Phi(x),$

•
$$\varphi(A) \leq \varphi(B)$$
 whenever $A \subseteq B$

$$\vdash \lim_{n\to\infty}\varphi(A\cap n)=\varphi(A).$$

Such functions are called

- ▶ Φ(**0**) = 0,
- $\Phi(x+y) \leq \Phi(x) + \Phi(y)$, $\Phi(r \cdot x) = r \cdot \Phi(x)$,
- $\Phi(x) \le \Phi(y)$ whenever $|x(n)| \le |y(n)|$ for each n,

$$\vdash \lim_{n\to\infty}\varphi(A\cap n)=\varphi(A).$$

Such functions are called

▶
$$\Phi(\mathbf{0}) = 0,$$

▶ $\Phi(x + y) \le \Phi(x) + \Phi(y), \ \Phi(r \cdot x) = r \cdot \Phi(x),$
▶ $\Phi(x) \le \Phi(y)$ whenever $|x(n)| \le |y(n)|$ for each $n,$
▶ $\lim_{n\to\infty} \Phi(\pi_{[0,...,n]}(x)) = \Phi(x).$
 $(\pi_A(x))(n) = x(n)$ for $n \in A$ and $(\pi_A(x))(n) = 0$ otherwise.

- ▶ Φ(**0**) = 0,
- $\Phi(x+y) \leq \Phi(x) + \Phi(y), \ \Phi(r \cdot x) = r \cdot \Phi(x),$
- $\Phi(x) \leq \Phi(y)$ whenever $|x(n)| \leq |y(n)|$ for each *n*,
- $\vdash \lim_{n\to\infty} \Phi(\pi_{[0,\ldots,n]}(x)) = \Phi(x).$

Such functions should be called

- ▶ Φ(**0**) = 0,
- $\Phi(x+y) \leq \Phi(x) + \Phi(y), \ \Phi(r \cdot x) = r \cdot \Phi(x),$
- $\Phi(x) \le \Phi(y)$ whenever $|x(n)| \le |y(n)|$ for each n,

$$\vdash \lim_{n\to\infty} \Phi(\pi_{[0,\ldots,n]}(x)) = \Phi(x).$$

Such functions should be called monotone

- ▶ Φ(**0**) = 0,
- $\Phi(x+y) \leq \Phi(x) + \Phi(y), \ \Phi(r \cdot x) = r \cdot \Phi(x),$
- $\Phi(x) \leq \Phi(y)$ whenever $|x(n)| \leq |y(n)|$ for each n,

Such functions should be called monotone LSC

- ▶ Φ(**0**) = 0,
- $\Phi(x+y) \leq \Phi(x) + \Phi(y), \ \Phi(r \cdot x) = r \cdot \Phi(x),$
- $\Phi(x) \leq \Phi(y)$ whenever $|x(n)| \leq |y(n)|$ for each *n*,

$$\vdash \lim_{n\to\infty} \Phi(\pi_{[0,\ldots,n]}(x)) = \Phi(x).$$

Such functions should be called monotone LSC extended

- ▶ Φ(**0**) = 0,
- $\Phi(x+y) \leq \Phi(x) + \Phi(y), \ \Phi(r \cdot x) = r \cdot \Phi(x),$
- $\Phi(x) \leq \Phi(y)$ whenever $|x(n)| \leq |y(n)|$ for each n,
- $\vdash \lim_{n\to\infty} \Phi(\pi_{[0,\ldots,n]}(x)) = \Phi(x).$

Such functions should be called monotone LSC extended norms.

- ▶ Φ(**0**) = 0,
- $\Phi(x+y) \leq \Phi(x) + \Phi(y), \ \Phi(r \cdot x) = r \cdot \Phi(x),$
- $\Phi(x) \leq \Phi(y)$ whenever $|x(n)| \leq |y(n)|$ for each *n*,
- $\vdash \lim_{n\to\infty} \Phi(\pi_{[0,\ldots,n]}(x)) = \Phi(x).$

But we will call them nice extended norms.
Consider a function $\Phi \colon \mathbb{R}^\omega \to [0,\infty]$ such that for each $x,y \in \mathbb{R}^\omega$

- ► Φ**(0**) = 0,
- $\blacktriangleright \Phi(x+y) \leq \Phi(x) + \Phi(y), \ \Phi(r \cdot x) = r \cdot \Phi(x),$
- $\Phi(x) \leq \Phi(y)$ whenever $|x(n)| \leq |y(n)|$ for each *n*,

$$\vdash \lim_{n\to\infty} \Phi(\pi_{[0,\ldots,n]}(x)) = \Phi(x).$$

But we will call them nice extended norms.

Nice extended norm = norm on \mathbb{R}^{ω} which may attain infinite values and which is compatible with the topological structure of \mathbb{R}^{ω} .

Fin(
$$\Phi$$
) = { $x \in \mathbb{R}^{\omega} : \Phi(x) < \infty$ }.
Exh(Φ) = { $x \in \mathbb{R}^{\omega} : \lim_{n} \Phi(\pi_{\omega \setminus n}(x)) = 0$

Exercise: What kind of objects are those guys?

$$Fin(\Phi) = \{ x \in \mathbb{R}^{\omega} : \Phi(x) < \infty \}.$$

$$Fin(\Phi) = \{ x \in \mathbb{R}^{\omega} : \lim_{n \to \infty} \Phi(\pi_{\omega \setminus n}(x)) = 0 \}.$$

Exercise: What kind of objects are those guys?

$$Fin(\Phi) = \{ x \in \mathbb{R}^{\omega} : \Phi(x) < \infty \}.$$

$$Fin(\Phi) = \{ x \in \mathbb{R}^{\omega} : \lim_{n \to \infty} \Phi(\pi_{\omega \setminus n}(x)) = 0 \}.$$

Exercise: What kind of objects are those guys?

► Fin(
$$\Phi$$
) = { $x \in \mathbb{R}^{\omega}$: $\Phi(x) < \infty$ }.
► Exh(Φ) = { $x \in \mathbb{R}^{\omega}$: lim_n $\Phi(\pi_{\omega \setminus n}(x)) = 0$ }

• Both $Fin(\Phi)$ and $Exh(\Phi)$ are Banach spaces.

Analogo di Solecki

Let Φ be a nice extended norm.

► Fin(
$$\Phi$$
) = { $x \in \mathbb{R}^{\omega}$: $\Phi(x) < \infty$ }.
► Exh(Φ) = { $x \in \mathbb{R}^{\omega}$: lim_n $\Phi(\pi_{\omega \setminus n}(x)) = 0$ }.

Teorema (Solecki) For every analytic P-ideal *I* there is an LSC submeasure φ such that

 $\mathcal{I} = \mathrm{Exh}(\varphi).$

Teorema For every Banach space X with unconditional basis there is a nice extended norm Φ such that

 $X = \operatorname{Exh}(\Phi).$

Analogo di Solecki

Let Φ be a nice extended norm.

► Fin(
$$\Phi$$
) = { $x \in \mathbb{R}^{\omega}$: $\Phi(x) < \infty$ }.
► Exh(Φ) = { $x \in \mathbb{R}^{\omega}$: lim_n $\Phi(\pi_{\omega \setminus n}(x)) = 0$ }.

Teorema (Solecki) For every analytic P-ideal *I* there is an LSC submeasure φ such that

$$\mathcal{I} = \mathrm{Exh}(\varphi).$$

 Teorema For every Banach space X with unconditional basis there is a nice extended norm Φ such that

 $X = \operatorname{Exh}(\Phi).$

Analogo di Solecki

Let Φ be a nice extended norm.

► Fin(
$$\Phi$$
) = { $x \in \mathbb{R}^{\omega}$: $\Phi(x) < \infty$ }.
► Exh(Φ) = { $x \in \mathbb{R}^{\omega}$: lim_n $\Phi(\pi_{\omega \setminus n}(x)) = 0$ }.

Teorema (Solecki) For every analytic P-ideal *I* there is an LSC submeasure φ such that

$$\mathcal{I} = \mathrm{Exh}(\varphi).$$

Teorema For every Banach space X with unconditional basis there is a nice extended norm Φ such that

$$X = \operatorname{Exh}(\Phi).$$

► \mathcal{I} is F_{σ} .

• there is an LSC submeasure φ such that

$$\mathcal{I} = \operatorname{Fin}(\varphi) = \operatorname{Exh}(\varphi).$$

- $\operatorname{Exh}(\Phi)$ is F_{σ} (in the product topology of \mathbb{R}^{ω});
- $\operatorname{Exh}(\Phi) = \operatorname{Fin}(\Phi);$
- Exh(Φ) does not contain an isomorphic copy of c₀;
- Fin(Φ) is separable;
- $\mathbb{R}^{\omega}/\mathrm{Exh}(\Phi)$ is Borel reducible to $\mathbb{R}^{\omega}/\ell_{\infty}$.

• \mathcal{I} is F_{σ} .

 \blacktriangleright there is an LSC submeasure φ such that

$$\mathcal{I} = \operatorname{Fin}(\varphi) = \operatorname{Exh}(\varphi).$$

- $\operatorname{Exh}(\Phi)$ is F_{σ} (in the product topology of \mathbb{R}^{ω});
- $\operatorname{Exh}(\Phi) = \operatorname{Fin}(\Phi);$
- Exh(Φ) does not contain an isomorphic copy of c₀;
- Fin(Φ) is separable;
- $\mathbb{R}^{\omega}/\mathrm{Exh}(\Phi)$ is Borel reducible to $\mathbb{R}^{\omega}/\ell_{\infty}$.

- \mathcal{I} is F_{σ} .
- \blacktriangleright there is an LSC submeasure φ such that

$$\mathcal{I} = \operatorname{Fin}(\varphi) = \operatorname{Exh}(\varphi).$$

- $\operatorname{Exh}(\Phi)$ is F_{σ} (in the product topology of \mathbb{R}^{ω});
- $\operatorname{Exh}(\Phi) = \operatorname{Fin}(\Phi);$
- Exh(Φ) does not contain an isomorphic copy of c₀;
- Fin(Φ) is separable;
- $\mathbb{R}^{\omega}/\mathrm{Exh}(\Phi)$ is Borel reducible to $\mathbb{R}^{\omega}/\ell_{\infty}$.

- \mathcal{I} is F_{σ} .
- there is an LSC submeasure φ such that

$$\mathcal{I} = \operatorname{Fin}(\varphi) = \operatorname{Exh}(\varphi).$$

- $\operatorname{Exh}(\Phi)$ is F_{σ} (in the product topology of \mathbb{R}^{ω});
- $\operatorname{Exh}(\Phi) = \operatorname{Fin}(\Phi);$
- Exh(Φ) does not contain an isomorphic copy of c₀;
- Fin(Φ) is separable;
- $\mathbb{R}^{\omega}/\mathrm{Exh}(\Phi)$ is Borel reducible to $\mathbb{R}^{\omega}/\ell_{\infty}$.

- \mathcal{I} is F_{σ} .
- there is an LSC submeasure φ such that

$$\mathcal{I} = \operatorname{Fin}(\varphi) = \operatorname{Exh}(\varphi).$$

- $\operatorname{Exh}(\Phi)$ is F_{σ} (in the product topology of \mathbb{R}^{ω});
- $\operatorname{Exh}(\Phi) = \operatorname{Fin}(\Phi)$
- Exh(Φ) does not contain an isomorphic copy of c₀;
- Fin(Φ) is separable;
- $\mathbb{R}^{\omega}/\mathrm{Exh}(\Phi)$ is Borel reducible to $\mathbb{R}^{\omega}/\ell_{\infty}$.

- \mathcal{I} is F_{σ} .
- there is an LSC submeasure φ such that

$$\mathcal{I} = \operatorname{Fin}(\varphi) = \operatorname{Exh}(\varphi).$$

- $\operatorname{Exh}(\Phi)$ is F_{σ} (in the product topology of \mathbb{R}^{ω});
- $\operatorname{Exh}(\Phi) = \operatorname{Fin}(\Phi);$
- Exh(Φ) does not contain an isomorphic copy of c₀;
- Fin(Φ) is separable;
- $\mathbb{R}^{\omega}/\mathrm{Exh}(\Phi)$ is Borel reducible to $\mathbb{R}^{\omega}/\ell_{\infty}$.

- \mathcal{I} is F_{σ} .
- there is an LSC submeasure φ such that

$$\mathcal{I} = \operatorname{Fin}(\varphi) = \operatorname{Exh}(\varphi).$$

- $\operatorname{Exh}(\Phi)$ is F_{σ} (in the product topology of \mathbb{R}^{ω});
- $\operatorname{Exh}(\Phi) = \operatorname{Fin}(\Phi);$
- Exh(Φ) does not contain an isomorphic copy of c₀;
- Fin(Φ) is separable;
- $\mathbb{R}^{\omega}/\operatorname{Exh}(\Phi)$ is Borel reducible to $\mathbb{R}^{\omega}/\ell_{\infty}$.

- \mathcal{I} is F_{σ} .
- there is an LSC submeasure φ such that

$$\mathcal{I} = \operatorname{Fin}(\varphi) = \operatorname{Exh}(\varphi).$$

Theorem Let Φ be a nice extended norm. TFAE

- $\operatorname{Exh}(\Phi)$ is F_{σ} (in the product topology of \mathbb{R}^{ω});
- $\operatorname{Exh}(\Phi) = \operatorname{Fin}(\Phi);$
- $Exh(\Phi)$ does not contain an isomorphic copy of c_0 ;
- Fin(Φ) is separable;

• $\mathbb{R}^{\omega}/\operatorname{Exh}(\Phi)$ is Borel reducible to $\mathbb{R}^{\omega}/\ell_{\infty}$.

- \mathcal{I} is F_{σ} .
- there is an LSC submeasure φ such that

$$\mathcal{I} = \operatorname{Fin}(\varphi) = \operatorname{Exh}(\varphi).$$

- $\operatorname{Exh}(\Phi)$ is F_{σ} (in the product topology of \mathbb{R}^{ω});
- $\operatorname{Exh}(\Phi) = \operatorname{Fin}(\Phi);$
- $Exh(\Phi)$ does not contain an isomorphic copy of c_0 ;
- Fin(Φ) is separable;
- $\mathbb{R}^{\omega}/\mathrm{Exh}(\Phi)$ is Borel reducible to $\mathbb{R}^{\omega}/\ell_{\infty}$.

Theorem Let Φ be a nice extended norm. TFAE

- $\operatorname{Exh}(\Phi)$ is F_{σ} (in the product topology of \mathbb{R}^{ω});
- $\operatorname{Exh}(\Phi) = \operatorname{Fin}(\Phi);$
- $Exh(\Phi)$ does not contain an isomorphic copy of c_0 ;
- Fin(Φ) is separable;
- $\mathbb{R}^{\omega}/\mathrm{Exh}(\Phi)$ is Borel reducible to $\mathbb{R}^{\omega}/\ell_{\infty}$.

In fact, many of the above implications was known before, in a different language (Bessaga-Pełczyński, Drewnowski-Labuda, Ding and others).

Commento storico

- Banach spaces with unconditional bases are *continuous* versions of analytic P-ideals.
- ▶ Banach spaces with unconditional bases without copies of c_0 are *continuous* versions of F_σ P-ideals.

- Banach spaces with unconditional bases are *continuous* versions of analytic P-ideals.
- ▶ Banach spaces with unconditional bases without copies of c_0 are *continuous* versions of F_σ P-ideals.

- Banach spaces with unconditional bases are *continuous* versions of analytic P-ideals.
- ▶ Banach spaces with unconditional bases without copies of c_0 are *continuous* versions of F_σ P-ideals.

- Banach spaces with unconditional bases are *continuous* versions of analytic P-ideals.
- ► Banach spaces with unconditional bases without copies of c_0 are *continuous* versions of F_σ P-ideals.

- Banach spaces with unconditional bases are *continuous* versions of analytic P-ideals.
- ► Banach spaces with unconditional bases without copies of c_0 are *continuous* versions of F_σ P-ideals.

Sottomisure da norme

Let Φ be a nice norm;

• Choose $x \in \mathbb{R}^{\omega}$;

• Let $\varphi \colon \mathcal{P}(\omega) \to [0,\infty]$ be defined by

 $\varphi(A) = \Phi(\pi_A(x));$

• Then φ is a LSC submeasure.

Sottomisure da norme

- Let Φ be a nice norm;
- Choose $x \in \mathbb{R}^{\omega}$;
- Let $\varphi \colon \mathcal{P}(\omega) \to [0,\infty]$ be defined by

 $\varphi(A) = \Phi(\pi_A(x));$

• Then φ is a LSC submeasure.

- Let Φ be a nice norm;
- Choose $x \in \mathbb{R}^{\omega}$;
- ▶ Let $\varphi \colon \mathcal{P}(\omega) \to [0,\infty]$ be defined by

$$\varphi(A) = \Phi(\pi_A(x));$$

• Then φ is a LSC submeasure.

- Let Φ be a nice norm;
- Choose $x \in \mathbb{R}^{\omega}$;
- ▶ Let $\varphi \colon \mathcal{P}(\omega) \to [0,\infty]$ be defined by

$$\varphi(A) = \Phi(\pi_A(x));$$

• Then φ is a LSC submeasure.

- Let Φ be a nice norm;
- Choose $x \in \mathbb{R}^{\omega}$;
- ▶ Let $\varphi \colon \mathcal{P}(\omega) \to [0,\infty]$ be defined by

$$\varphi(A) = \Phi(\pi_A(x));$$

• Then φ is a LSC submeasure.

"A nice norm $+ x \in \mathbb{R}^{\omega} = \text{LSC submeasure}$ ".

Usually we will choose very particular "x":

$$w = (1, 1/2, 1/2, \underbrace{1/4, \cdots, 1/4}_{4 \text{ times}}, \underbrace{1/8, \cdots, 1/8}_{8 \text{ times}}, \cdots).$$

- w converges to 0;
- w is not summable;
- w is the best sequence with the above properties (imho)
- ▶ if we switch from \u03c6 to 2^{<\u03c6} in the most natural way then this choice becomes obvious.

$$w = (1, 1/2, 1/2, \underbrace{1/4, \cdots, 1/4}_{4 \text{ times}}, \underbrace{1/8, \cdots, 1/8}_{8 \text{ times}}, \cdots).$$

- w converges to 0;
- w is not summable;
- w is the best sequence with the above properties (imho)
- ▶ if we switch from \u03c6 to 2^{<\u03c6} in the most natural way then this choice becomes obvious.

$$w = (1, 1/2, 1/2, \underbrace{1/4, \cdots, 1/4}_{4 \text{ times}}, \underbrace{1/8, \cdots, 1/8}_{8 \text{ times}}, \cdots).$$

- w converges to 0;
- w is not summable;
- w is the best sequence with the above properties (imho)
- ▶ if we switch from \u03c6 to 2^{<\u03c6} in the most natural way then this choice becomes obvious.

$$w = (1, 1/2, 1/2, \underbrace{1/4, \cdots, 1/4}_{4 \text{ times}}, \underbrace{1/8, \cdots, 1/8}_{8 \text{ times}}, \cdots).$$

- w converges to 0;
- w is not summable;
- w is the best sequence with the above properties (imho)
- ▶ if we switch from \u03c6 to 2^{<\u03c6} in the most natural way then this choice becomes obvious.

$$w = (1, 1/2, 1/2, \underbrace{1/4, \cdots, 1/4}_{4 \text{ times}}, \underbrace{1/8, \cdots, 1/8}_{8 \text{ times}}, \cdots).$$

- w converges to 0;
- w is not summable;
- w is the best sequence with the above properties (imho)
- ▶ if we switch from \u03c6 to 2^{<\u03c6} in the most natural way then this choice becomes obvious.

$$w = (1, 1/2, 1/2, \underbrace{1/4, \cdots, 1/4}_{4 \text{ times}}, \underbrace{1/8, \cdots, 1/8}_{8 \text{ times}}, \cdots).$$

- w converges to 0;
- w is not summable;
- w is the best sequence with the above properties (imho)
- ▶ if we switch from \u03c6 to 2^{<\u03c6} in the most natural way then this choice becomes obvious.

$$w = (1, 1/2, 1/2, \underbrace{1/4, \cdots, 1/4}_{4 \text{ times}}, \underbrace{1/8, \cdots, 1/8}_{8 \text{ times}}, \cdots).$$

- w converges to 0;
- w is not summable;
- w is the best sequence with the above properties (imho)
- if we switch from ω to 2^{<ω} in the most natural way then this choice becomes obvious.
"A nice norm $+ x \in \mathbb{R}^{\omega} = \text{LSC submeasure}$ ". Usually we will choose very particular "x":

$$w = (1, 1/2, 1/2, \underbrace{1/4, \cdots, 1/4}_{4 \text{ times}}, \underbrace{1/8, \cdots, 1/8}_{8 \text{ times}}, \cdots).$$

Why such w?

- w converges to 0;
- w is not summable;
- w is the best sequence with the above properties (imho)
- ▶ if we switch from ω to $2^{<\omega}$ in the most natural way then this choice becomes obvious.

• Choose your favourite family \mathcal{F} of finite subsets of ω ;

- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- $\Phi_{\mathcal{F}}$ is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

 $\begin{aligned} \mathcal{F} &= \text{singletons.} \\ & \text{Exh}(\Phi_{\mathcal{F}}) = c_0. \\ & \text{Fin}(\Phi_{\mathcal{F}}) = \ell_{\infty}. \\ & \text{Exh}(\varphi_{\mathcal{F}}) = \mathcal{P}(\omega). \end{aligned}$

Ricetta per una buona norma

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- $\Phi_{\mathcal{F}}$ is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

 $\begin{aligned} \mathcal{F} &= \text{singletons.} \\ & \text{Exh}(\Phi_{\mathcal{F}}) = c_0. \\ & \text{Fin}(\Phi_{\mathcal{F}}) = \ell_{\infty}. \\ & \text{Exh}(\varphi_{\mathcal{F}}) = \mathcal{P}(\omega). \end{aligned}$

Ricetta per una buona norma

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

 $\begin{aligned} \mathcal{F} &= \text{singletons.} \\ & \text{Exh}(\Phi_{\mathcal{F}}) = c_0. \\ & \text{Fin}(\Phi_{\mathcal{F}}) = \ell_{\infty}. \\ & \text{Exh}(\varphi_{\mathcal{F}}) = \mathcal{P}(\omega). \end{aligned}$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

 $\mathcal{F} = \text{singletons.} \\ \operatorname{Exh}(\Phi_{\mathcal{F}}) = c_0. \\ \operatorname{Fin}(\Phi_{\mathcal{F}}) = \ell_{\infty}. \\ \operatorname{Exh}(\varphi_{\mathcal{F}}) = \mathcal{P}(\omega).$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

 $\mathcal{F} = \text{singletons.} \\ \text{Exh}(\Phi_{\mathcal{F}}) = c_0. \\ \text{Fin}(\Phi_{\mathcal{F}}) = \ell_{\infty}. \\ \text{Exh}(\varphi_{\mathcal{F}}) = \mathcal{P}(\omega).$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

 $\mathcal{F} = \text{singletons.}$ $\operatorname{Exh}(\Phi_{\mathcal{F}}) = c_0.$ $\operatorname{Fin}(\Phi_{\mathcal{F}}) = \ell_{\infty}.$ $\operatorname{Exh}(\varphi_{\mathcal{F}}) = \mathcal{P}(\omega).$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

 $\mathcal{F} = \text{singletons.}$ $\operatorname{Exh}(\Phi_{\mathcal{F}}) = c_0.$ $\operatorname{Fin}(\Phi_{\mathcal{F}}) = \ell_{\infty}.$ $\operatorname{Exh}(\varphi_{\mathcal{F}}) = \mathcal{P}(\omega).$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

 $\begin{aligned} \mathcal{F} &= \text{singletons.} \\ & \text{Exh}(\Phi_{\mathcal{F}}) = c_0. \\ & \text{Fin}(\Phi_{\mathcal{F}}) = \ell_{\infty}. \\ & \text{Exh}(\varphi_{\mathcal{F}}) = \mathcal{P}(\omega) \end{aligned}$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

 $\begin{aligned} \mathcal{F} &= \text{singletons.} \\ & \operatorname{Exh}(\Phi_{\mathcal{F}}) = c_0. \\ & \operatorname{Fin}(\Phi_{\mathcal{F}}) = \ell_{\infty}. \\ & \operatorname{Exh}(\varphi_{\mathcal{F}}) = \mathcal{P}(\omega). \end{aligned}$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

$$\mathcal{F} = [\omega]^{<\omega}$$
.
 $\operatorname{Exh}(\Phi_{\mathcal{F}}) = \ell_1.$
 $\operatorname{Fin}(\Phi_{\mathcal{F}}) = \ell_1.$
 $\operatorname{Exh}(\varphi_{\mathcal{F}})$ - summable ideal.

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

$$\begin{aligned} \mathcal{F} &= [\omega]^{<\omega} \\ & \text{Exh}(\Phi_{\mathcal{F}}) = \ell_1. \\ & \text{Fin}(\Phi_{\mathcal{F}}) = \ell_1. \\ & \text{Exh}(\varphi_{\mathcal{F}}) \text{ - summable ideal.} \end{aligned}$$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

$$\mathcal{F} = [\omega]^{<\omega}$$
.
 $\operatorname{Exh}(\Phi_{\mathcal{F}}) = \ell_1.$
 $\operatorname{Fin}(\Phi_{\mathcal{F}}) = \ell_1.$
 $\operatorname{Exh}(\varphi_{\mathcal{F}})$ - summable ideal

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

$$\begin{aligned} \mathcal{F} &= [\omega]^{<\omega} \\ &\text{Exh}(\Phi_{\mathcal{F}}) = \ell_1. \\ &\text{Fin}(\Phi_{\mathcal{F}}) = \ell_1. \end{aligned}$$
$$\begin{aligned} &\text{Exh}(\varphi_{\mathcal{F}}) - \text{summable ideal} \end{aligned}$$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

$$\mathcal{F} = [\omega]^{<\omega}$$
 .
 $\operatorname{Exh}(\Phi_{\mathcal{F}}) = \ell_1.$
 $\operatorname{Fin}(\Phi_{\mathcal{F}}) = \ell_1.$
 $\operatorname{Exh}(\varphi_{\mathcal{F}})$ - summable ideal.

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

$$\mathcal{F} = \{ [2^n, 2^{n+1}) \colon n \in \omega \}.$$

Exh $(\Phi_{\mathcal{F}}) = c_0$ product of $\ell_1(2^n)$.
Fin $(\Phi_{\mathcal{F}}) = \ell_{\infty}$ product of $\ell_1(2^n)$.
Exh $(\varphi_{\mathcal{F}})$ - density ideal.

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

$$\mathcal{F} = \{ [2^n, 2^{n+1}) \colon n \in \omega \}.$$

Exh $(\Phi_{\mathcal{F}}) = c_0$ product of $\ell_1(2^n)$.
Fin $(\Phi_{\mathcal{F}}) = \ell_{\infty}$ product of $\ell_1(2^n)$.
Exh $(\varphi_{\mathcal{F}})$ - density ideal.

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

$$\mathcal{F} = \{ [2^n, 2^{n+1}) \colon n \in \omega \}.$$

Exh $(\Phi_{\mathcal{F}}) = c_0$ product of $\ell_1(2^n)$.
Fin $(\Phi_{\mathcal{F}}) = \ell_{\infty}$ product of $\ell_1(2^n)$.
Exh $(\varphi_{\mathcal{F}})$ - density ideal.

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

$$\begin{aligned} \mathcal{F} &= \{ [2^n, 2^{n+1}) \colon n \in \omega \}. \\ \mathrm{Exh}(\Phi_{\mathcal{F}}) &= c_0 \text{ product of } \ell_1(2^n). \\ \mathrm{Fin}(\Phi_{\mathcal{F}}) &= \ell_\infty \text{ product of } \ell_1(2^n). \\ \mathrm{Exh}(\varphi_{\mathcal{F}}) &- \text{ density ideal.} \end{aligned}$$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

$$\begin{aligned} \mathcal{F} &= \{ [2^n, 2^{n+1}) \colon n \in \omega \}. \\ \mathrm{Exh}(\Phi_{\mathcal{F}}) &= c_0 \text{ product of } \ell_1(2^n). \\ \mathrm{Fin}(\Phi_{\mathcal{F}}) &= \ell_\infty \text{ product of } \ell_1(2^n). \\ \mathrm{Exh}(\varphi_{\mathcal{F}}) &- \text{ density ideal.} \end{aligned}$$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

$$\mathcal{F} = \{F \in [\omega]^{\leq \omega} : |F| \leq \min F + 1\}$$
.
 $\operatorname{Exh}(\Phi_{\mathcal{F}}) = \operatorname{Schreier space.}$
 $\operatorname{Fin}(\Phi_{\mathcal{F}}) = ?.$
 $\operatorname{Exh}(\varphi_{\mathcal{F}}) - \operatorname{density ideal.}$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

$$\begin{aligned} \mathcal{F} &= \{ F \in [\omega]^{<\omega} \colon |F| \leq \min F + 1 \} \\ & \text{Exh}(\Phi_{\mathcal{F}}) = \text{Schreier space.} \\ & \text{Fin}(\Phi_{\mathcal{F}}) = ?. \\ & \text{Exh}(\varphi_{\mathcal{F}}) \text{ - density ideal.} \end{aligned}$$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;

•
$$\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$$
 is an LSC submeasure;

$$\begin{split} \mathcal{F} &= \{F \in [\omega]^{<\omega} \colon |F| \leq \min F + 1\} \\ & \operatorname{Exh}(\Phi_{\mathcal{F}}) = \operatorname{Schreier space.} \\ & \operatorname{Fin}(\Phi_{\mathcal{F}}) = ?. \\ & \operatorname{Exh}(\varphi_{\mathcal{F}}) - \operatorname{density ideal.} \end{split}$$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

$$\begin{split} \mathcal{F} &= \{F \in [\omega]^{<\omega} \colon |F| \leq \min F + 1\} \\ & \operatorname{Exh}(\Phi_{\mathcal{F}}) = \operatorname{Schreier space.} \\ & \operatorname{Fin}(\Phi_{\mathcal{F}}) = ?. \\ & \operatorname{Exh}(\varphi_{\mathcal{F}}) - \operatorname{density ideal.} \end{split}$$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

$$\begin{split} \mathcal{F} &= \{F \in [\omega]^{<\omega} \colon |F| \leq \min F + 1\} \\ & \operatorname{Exh}(\Phi_{\mathcal{F}}) = \text{Schreier space.} \\ & \operatorname{Fin}(\Phi_{\mathcal{F}}) = ?. \\ & \operatorname{Exh}(\varphi_{\mathcal{F}}) \text{ - density ideal.} \end{split}$$

Józef Schreier

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

$$\begin{split} \mathcal{F} &- \text{Schreier family of rank } \alpha. \\ & \text{Exh}(\Phi_{\mathcal{F}}) = \text{Schreier space of rank } \alpha \ . \\ & \text{Fin}(\Phi_{\mathcal{F}}) = ?. \\ & \text{Exh}(\varphi_{\mathcal{F}}) - \text{ "density ideal of rank } \alpha \text{" (potentially interesting?)} \end{split}$$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

 $\begin{array}{l} \mathcal{F} \text{ - Schreier family of rank } \alpha. \\ \operatorname{Exh}(\Phi_{\mathcal{F}}) = \operatorname{Schreier space of rank } \alpha \ . \\ \operatorname{Fin}(\Phi_{\mathcal{F}}) = ?. \\ \operatorname{Exh}(\varphi_{\mathcal{F}}) \text{ - "density ideal of rank } \alpha" \text{ (potentially interesting?)} \end{array}$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

 $\begin{array}{l} \mathcal{F} \text{ - Schreier family of rank } \alpha. \\ \operatorname{Exh}(\Phi_{\mathcal{F}}) = \text{Schreier space of rank } \alpha \ . \\ \operatorname{Fin}(\Phi_{\mathcal{F}}) = ?. \\ \operatorname{Exh}(\varphi_{\mathcal{F}}) \text{ - "density ideal of rank } \alpha" \text{ (potentially interesting?)} \end{array}$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

 $\begin{array}{l} \mathcal{F} \text{ - Schreier family of rank } \alpha. \\ \operatorname{Exh}(\Phi_{\mathcal{F}}) = \text{Schreier space of rank } \alpha \ . \\ \operatorname{Fin}(\Phi_{\mathcal{F}}) = ?. \\ \operatorname{Exh}(\varphi_{\mathcal{F}}) \text{ - "density ideal of rank } \alpha" \text{ (potentially interesting?)} \end{array}$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

$$\begin{split} \mathcal{F} &- \text{Schreier family of rank } \alpha. \\ & \text{Exh}(\Phi_{\mathcal{F}}) = \text{Schreier space of rank } \alpha \ . \\ & \text{Fin}(\Phi_{\mathcal{F}}) = ?. \\ & \text{Exh}(\varphi_{\mathcal{F}}) - \text{ "density ideal of rank } \alpha " \text{ (potentially interesting?)} \end{split}$$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

$$\begin{split} \mathcal{F} &- \text{Schreier family of rank } \alpha. \\ & \operatorname{Exh}(\Phi_{\mathcal{F}}) = \text{Schreier space of rank } \alpha \ . \\ & \operatorname{Fin}(\Phi_{\mathcal{F}}) = ?. \\ & \operatorname{Exh}(\varphi_{\mathcal{F}}) - \text{ "density ideal of rank } \alpha \text{" (potentially interesting?)} \end{split}$$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

 $\begin{array}{l} \mathcal{F} \text{ - antichain in } 2^{<\omega}. \\ & \text{Exh}(\Phi_{\mathcal{F}}) = ?. \end{array} \\ \text{Fin}(\Phi_{\mathcal{F}}) = ? \ (\text{it contains the dual space of } C[0,1]) \\ & \text{Exh}(\varphi_{\mathcal{F}}) \text{ - trace of null.} \end{array}$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

 $\begin{array}{l} \mathcal{F} \text{ - antichain in } 2^{<\omega}.\\ \mathrm{Exh}(\Phi_{\mathcal{F}}) = ?.\\ \mathrm{Fin}(\Phi_{\mathcal{F}}) = ? \mbox{ (it contains the dual space of } C[0,1])\\ \mathrm{Exh}(\varphi_{\mathcal{F}}) \mbox{ - trace of null.} \end{array}$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

 $\begin{array}{l} \mathcal{F} \text{ - antichain in } 2^{<\omega}.\\ \mathrm{Exh}(\Phi_{\mathcal{F}}) = ?.\\ \mathrm{Fin}(\Phi_{\mathcal{F}}) = ? \text{ (it contains the dual space of } C[0,1])\\ \mathrm{Exh}(\varphi_{\mathcal{F}}) \text{ - trace of null.} \end{array}$

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

 $\begin{array}{l} \mathcal{F} \text{ - antichain in } 2^{<\omega}.\\ \mathrm{Exh}(\Phi_{\mathcal{F}}) = ?.\\ \mathrm{Fin}(\Phi_{\mathcal{F}}) = ? \text{ (it contains the dual space of } C[0,1])\\ \mathrm{Exh}(\varphi_{\mathcal{F}}) \text{ - trace of null.} \end{array}$
Example: anticatene

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

$$\begin{split} \mathcal{F} \text{ - antichain in } 2^{<\omega}. \\ & \text{Exh}(\Phi_{\mathcal{F}}) = ?. \\ & \text{Fin}(\Phi_{\mathcal{F}}) = ? \text{ (it contains the dual space of } C[0,1]) \\ & \text{Exh}(\varphi_{\mathcal{F}}) \text{ - trace of null.} \end{split}$$

Example: anticatene

- Choose your favourite family \mathcal{F} of finite subsets of ω ;
- For $F \in \mathcal{F}$ and $x \in \mathbb{R}^{\omega}$ let $|x|(F) = \sum_{i \in F} |x(i)|$;
- Define $\Phi(x) = \sup_{F \in \mathcal{F}} |x|(F);$
- Φ_F is a nice norm;
- $\varphi_{\mathcal{F}} = \Phi(\pi_{\cdot}(w))$ is an LSC submeasure;

 $\begin{array}{l} \mathcal{F} \text{ - antichain in } 2^{<\omega}. \\ \operatorname{Exh}(\Phi_{\mathcal{F}}) = ?. \text{ (potentially interesting?)} \\ \operatorname{Fin}(\Phi_{\mathcal{F}}) = ? \text{ (it contains the dual space of } C[0,1]) \\ \operatorname{Exh}(\varphi_{\mathcal{F}}) \text{ - trace of null.} \end{array}$

Molte grazie per la corteze attenzione.