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Framework

All spaces, denoted by X ,Y .., are separable and metrizable.
The variable D is for a discrete space.

The box topology on
∏

d∈D Xd has basic open sets
∏

d∈D Ud .
Denote ∆D(X ) the diagonal on X D.

A D-(dimensional) hypergraph H on X is a subset of X D

disjoint of ∆D(X ).
A homomorphism from H on X to H ′ on X ′ is a map
ϕ : X → X ′ sending H-hyperedges to H ′-hyperedges.

An example is the complete D-hypergraph on X : the
complement of ∆D(X ).
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Framework

For Y ⊆ X , and H a hypergraph on X , denote
H � Y := H ∩ Y D.
A set Y ⊆ X is H-independent if H � Y = ∅.

A κ-coloring of H is a map c : X → κ such that c−1({i}) is
H-independent for all i ∈ κ, for κ a cardinal.
There is a κ-coloring of H iff there is a homomorphism from
H to the complete hypergraph on a set of cardinality κ.

The chromatic number of H, χ(H), is the least κ such that
H has a κ-coloring.
If H is the complete D-hypergraph on X then χ(H) = |X |.
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The box-open hypergraph dichotomy

For t ∈ D<N, note Nt := {x ∈ DN | t v x}. Define

HDN :=
⋃

t∈D<N

∏
d∈D

Nta(d).

Let Γ be a class of spaces.

OGDD(Γ)
If H is a box-open D-hypergraph on X ∈ Γ, exactly one holds

χ(H) ≤ ℵ0

there is a continuous homomorphism from HDN to H.

We denote the latter case by HDN ≤c H.

Theorem (Feng)
For |D| ≥ 2, OGDD(Σ1

1) holds.
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OGD and AD

It turns out that the box-open hypergraph dichotomy follows from
determinacy.

Theorem
Assume AD. If H is a box-open N-hypergraph on Y analytic
Hausdorff, X ⊆ Y , exactly one holds

χ(H � X ) ≤ ℵ0.
HNN ≤c H � X.

Let us sketch a proof of this theorem.
Without loss of generality, we suppose that Y = NN.
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A game for OGD

Here H is a N-hypergraph on NN, X ⊆ NN, sn ∈ N<N and in = 0, 1

I II

s0
'' i0

wws1
'' i1

(sn)n (in)n

The rule
If im = 1 then I must play sn A sm for all n > m.

When does Player I win?
Case 1. in = 1 for infinitely many rounds n.
Then (sn)n is v-cofinal in x ∈ NN, and

I wins if x ∈ X .

Case 2. in = 0 for all rounds n > m.

I wins if
∏

n≥m Nsn ⊆ H.
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I has a winning strategy implies HNN ≤c H � X .

H is a N-hypergraph on NN, X ⊆ NN.
I builds (sn)n ⊆ N<N and II builds (in)n ∈ 2N.
The rule: if im = 1 then I must play sn A sm for all n > m.

Case 1. ∃∞n (in = 1)
I wins if

⋃
n sn = x ∈ X .

Case 2. ∀n > m (in = 0)
I wins if

∏
n≥m Nsn ⊆ H.

Suppose that I has a wining strategy ϕ.
Identify each y ∈ NN with a sequence (in)n as in Case 1.
For any such y , I plays ϕ(y) ∈ X .
By construction ϕ is continuous.
Using Case 2, ϕ is a homomorphism from HNN to H � X
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II has a winning strategy implies χ(H) ≤ ℵ0.

H is a N-hypergraph on NN, X ⊆ NN.
I builds (sn)n ⊆ N<N and II builds (in)n ∈ 2N.
The rule: if im = 1 then I must play sn A sm for all n > m.

Case 1. ∃∞n (in = 1)
I wins if

⋃
n sn = x ∈ X .

Case 2. ∀n > m (in = 0)
I wins if

∏
n≥m Nsn ⊆ H.

Suppose that II has a wining strategy τ .
When I plays (x � n)n for x ∈ X , II plays as in Case 2.
There is tx ∈ 2<N of maximal length such that txa(1) v τ(x).
By construction x 7→ tx is continuous, so locally constant.
x 7→ tx is constant on a neighborhood Nc(x) of x .
Using Case 2, c is an ℵ0-coloring of H.
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First application: a dichotomy for Kσ spaces.

Theorem (Hurewicz, Kechris - Saint Raymond)
Suppose OGDN(Γ). Given Y ⊆ X, Y ∈ Γ, exactly one holds:

Y is contained in a Kσ subset of X
there is a closed cont. injection ϕ : NN → X ranging in Y .

Sketch of proof. Consider HY the hypergraph of all injective
sequences in Y with no convergent subsequences.

HY is box-open in Y N.
If χ(HY ) ≤ ℵ0 then Y is contained in a Kσ set.
Otherwise, OGD(Γ) gives us ϕ ...

It is continuous and injective, to see that it is closed, take (xn)n in
NN and suppose ϕ(xn)→ y .
If (xn)n has no convergent subsequence, it contains a subsequence
of a HNN-hyperedge, but then

(
ϕ(xn)

)
n cannot converge.
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Second application: the Hurewicz dichotomy

Denote NN
∗ the space NN ∪ {sa(∞) | s ∈ N<N}.

Equipped with the smallest topology making both {t} and
Nt = {s ∈ NN

∗ | t v s} clopen.

It is homeomorphic to the Cantor space.
The Baire space NN is a Gδ subset that is not Fσ.
A map f : X → Y reduces A ⊆ X to B ⊆ Y iff f −1(B) = A.

Theorem (Hurewicz, Kechris-Louveau-Woodin)
Assume OGDN(Γ). Given A ⊆ X, A ∈ Γ, exactly one holds:

A is Fσ
there is a continuous map ϕ : NN

∗ → X reducing NN to A.
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The Hurewicz dichotomy, sketch of the proof

Theorem (Hurewicz, Kechris-Louveau-Woodin)
Assume OGDN(Γ). Given A ⊆ X, A ∈ Γ, exactly one holds:

A is Fσ
there is a continuous map ϕ : NN

∗ → X reducing NN to A.

Take HA the following hypergraph on A:

{(xn)n∈N ∈ AN | xn → x /∈ A}

If B ⊆ A is HA-independent, then B ⊆ A.
So χ(HA) ≤ ℵ0 implies A is Fσ.
Otherwise, as HA is box-open..
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Assume OGDN(Γ). Given A ⊆ X, A ∈ Γ, exactly one holds:

A is Fσ
there is a continuous map ϕ : NN

∗ → X reducing NN to A.

There is a continuous map ϕ : NN → A witnessing that
HNN ≤c HA.

Fix s ∈ N<N, and notice that for any x ∈ NN there is an
xs ∈ X \ A such that

ϕ(sa(n)ax) −→ xs

For y 6= x , we have ys = xs , otherwise by looking at(
ϕ(sa(n)axn)

)
n for x2n = x and x2n+1 = y we would have a

contradiction.
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The Hurewicz dichotomy, sketch of the proof

Theorem (Hurewicz, Kechris-Louveau-Woodin)
Assume OGDN(Γ). Given A ⊆ X, A ∈ Γ, exactly one holds:

A is Fσ
there is a continuous map ϕ : NN

∗ → X reducing NN to A.

Then

ϕ̄ : NN
∗ −→ X

s −→
{
ϕ(s) if s ∈ NN

xs otherwise.

is a continuous reduction from NN to A.
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A third application: the Jayne-Rogers theorem

OGD also gives a generalisation of the Jayne-Rogers theorem.
Recall that a function is σ-continuous with closed witnesses if it
can be covered by countably many continuous functions with
closed domains.

Theorem
Assume OGDN(Γ). For X ∈ Γ and f : X → Y Borel, the following
are equivalent:

f is σ-continuous with closed witnesses,
f is Gδ-measurable.

The original Jayne-Rogers theorem is the case Γ = Σ1
1.
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Chromatic numbers and cardinal characteristics

A N-hypergraph is hereditary if it is closed under
subsequences.
It is the case in our applications.

Recall the definition of the dominating number d:
For c, d in NN, say that d eventually dominates c in case
c(n) ≤ d(n) for cofinitely many n.
d is the least cardinality of a cofinal family of eventually
dominating elements of NN.

Theorem
Assume OGDN(Γ). For X ∈ Γ and H a box-open hereditary
N-hypergraph on X, either χ(H) ≤ ℵ0 of χ(H) ≥ d.
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Hereditary hypergraphs

Theorem
Assume OGDN(Γ). For X ∈ Γ and H a box-open hereditary
N-hypergraph on X, either χ(H) ≤ ℵ0 of χ(H) ≥ d.

Sketch of proof. HNN is not hereditary, so let’s look at a hereditary
version. Call (N)N the injective sequences of NN.

H′NN = {(sa(in)ab(n))n∈N | s ∈ N<N, (in)n ∈ (N)N,b ∈ (NN)N}

Since A ⊆ NN is H′NN-independent iff A is compact, χ(H′NN) = d.
Notice now that if H is hereditary and HNN ≤c H, then
H′NN ≤c H.
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Since A ⊆ NN is H′NN-independent iff A is compact, χ(H′NN) = d.
Notice now that if H is hereditary and HNN ≤c H, then
H′NN ≤c H.
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The general case

The covering number of a σ-ideal I on a set X , denoted by
cov(I), is the least cardinality of a family of elements of I
covering X .
Call M the ideal of meager sets.

Theorem
Assume OGDD(Γ). For X ∈ Γ and H a box-open D-hypergraph on
X, either χ(H) ≤ ℵ0 of χ(H) ≥ cov(M).

Since χ(HNN) = cov(M), this bound cannot be strengthened in
the general case. However..
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Stronger bounds in the case D finite.

Notice that H2N is the complete graph on 2N, so the case D = 2 is
trivial.

Theorem
Assume OGD(Γ). For X ∈ Γ and G an open graph on X , either
χ(H) ≤ ℵ0 of χ(H) ≥ c.

Call N the ideal of null sets.
Call b the least cardinality of a family F ⊆ NN such that for all
c ∈ NN there is a d ∈ F that is not eventually dominated by c.

Theorem
For 2 ≤ D < ℵ0, assume OGD(Γ). For X ∈ Γ and H an box-open
D-hypergraph on X, either χ(H) ≤ ℵ0 of χ(H) ≥ cov(N ) · b.

Thank you!
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