The Open Graph Dichotomy and the second level of the Borel hierarchy.

Raphaël Carroy joint work with Benjamin D. Miller and Dániel T. Soukup

Kurt Gödel Research Center Universität Wien

Joint meeting UMI-SIMAI-PTM Wrocław, Poland September 18th, 2018

- All spaces, denoted by X, Y..., are separable and metrizable.
- The variable *D* is for a discrete space.

- All spaces, denoted by X, Y..., are separable and metrizable.
- The variable *D* is for a discrete space.
- The **box** topology on $\prod_{d \in D} X_d$ has basic open sets $\prod_{d \in D} U_d$.
- Denote $\Delta^D(X)$ the diagonal on X^D .

- All spaces, denoted by X, Y..., are separable and metrizable.
- The variable *D* is for a discrete space.
- The **box** topology on $\prod_{d \in D} X_d$ has basic open sets $\prod_{d \in D} U_d$.
- Denote $\Delta^D(X)$ the diagonal on X^D .
- A D-(dimensional) hypergraph H on X is a subset of X^D disjoint of Δ^D(X).
- A homomorphism from H on X to H' on X' is a map $\varphi: X \to X'$ sending H-hyperedges to H'-hyperedges.

- All spaces, denoted by X, Y..., are separable and metrizable.
- The variable *D* is for a discrete space.
- The **box** topology on $\prod_{d \in D} X_d$ has basic open sets $\prod_{d \in D} U_d$.
- Denote $\Delta^D(X)$ the diagonal on X^D .
- A D-(dimensional) hypergraph H on X is a subset of X^D disjoint of Δ^D(X).
- A homomorphism from H on X to H' on X' is a map $\varphi: X \to X'$ sending H-hyperedges to H'-hyperedges.
- An example is the **complete** *D*-hypergraph on *X*: the complement of $\Delta^D(X)$.

For $Y \subseteq X$, and H a hypergraph on X, denote $H \upharpoonright Y := H \cap Y^D$.

• A set $Y \subseteq X$ is *H*-independent if $H \upharpoonright Y = \emptyset$.

- For $Y \subseteq X$, and H a hypergraph on X, denote $H \upharpoonright Y := H \cap Y^D$.
- A set $Y \subseteq X$ is *H*-independent if $H \upharpoonright Y = \emptyset$.
- A κ -coloring of H is a map $c : X \to \kappa$ such that $c^{-1}(\{i\})$ is H-independent for all $i \in \kappa$, for κ a cardinal.
- There is a κ-coloring of H iff there is a homomorphism from H to the complete hypergraph on a set of cardinality κ.

- For $Y \subseteq X$, and H a hypergraph on X, denote $H \upharpoonright Y := H \cap Y^D$.
- A set $Y \subseteq X$ is *H*-independent if $H \upharpoonright Y = \emptyset$.
- A κ -coloring of H is a map $c : X \to \kappa$ such that $c^{-1}(\{i\})$ is H-independent for all $i \in \kappa$, for κ a cardinal.
- There is a κ-coloring of H iff there is a homomorphism from H to the complete hypergraph on a set of cardinality κ.
- The chromatic number of H, $\chi(H)$, is the least κ such that H has a κ -coloring.
- If *H* is the complete *D*-hypergraph on *X* then $\chi(H) = |X|$.

The box-open hypergraph dichotomy

For $t \in D^{<\mathbb{N}}$, note $N_t := \{x \in D^{\mathbb{N}} \mid t \sqsubseteq x\}$. Define $\mathbb{H}_{D^{\mathbb{N}}} := \bigcup_{t \in D^{<\mathbb{N}}} \prod_{d \in D} N_{t \land (d)}.$ The box-open hypergraph dichotomy

For
$$t \in D^{<\mathbb{N}}$$
, note $N_t := \{x \in D^{\mathbb{N}} \mid t \sqsubseteq x\}$. Define
$$\mathbb{H}_{D^{\mathbb{N}}} := \bigcup_{t \in D^{<\mathbb{N}}} \prod_{d \in D} N_{t \frown (d)}.$$

Let Γ be a class of spaces.

 $OGD^{D}(\Gamma)$

If H is a box-open D-hypergraph on $X \in \Gamma$, exactly one holds

• $\chi(H) \leq \aleph_0$

• there is a continuous homomorphism from $\mathbb{H}_{D^{\mathbb{N}}}$ to H.

We denote the latter case by $\mathbb{H}_{D^{\mathbb{N}}} \leq_{c} H$.

The box-open hypergraph dichotomy

For
$$t \in D^{<\mathbb{N}}$$
, note $N_t := \{x \in D^{\mathbb{N}} \mid t \sqsubseteq x\}$. Define
$$\mathbb{H}_{D^{\mathbb{N}}} := \bigcup_{t \in D^{<\mathbb{N}}} \prod_{d \in D} N_{t \land (d)}.$$

Let Γ be a class of spaces.

 $OGD^{D}(\Gamma)$

If H is a box-open D-hypergraph on $X \in \Gamma$, exactly one holds

• $\chi(H) \leq \aleph_0$

• there is a continuous homomorphism from $\mathbb{H}_{D^{\mathbb{N}}}$ to H.

We denote the latter case by $\mathbb{H}_{D^{\mathbb{N}}} \leq_{c} H$.

```
Theorem (Feng)
For |D| \ge 2, OGD^{D}(\Sigma_{1}^{1}) holds.
```

OGD and AD

It turns out that the box-open hypergraph dichotomy follows from determinacy.

Theorem

Assume AD. If H is a box-open \mathbb{N} -hypergraph on Y analytic Hausdorff, $X \subseteq Y$, exactly one holds

$$\chi(H \upharpoonright X) \leq \aleph_0.$$

$$\blacksquare \mathbb{H}_{\mathbb{N}^{\mathbb{N}}} \leq_{c} H \upharpoonright X.$$

Let us sketch a proof of this theorem. Without loss of generality, we suppose that $Y = \mathbb{N}^{\mathbb{N}}$.

Here *H* is a \mathbb{N} -hypergraph on $\mathbb{N}^{\mathbb{N}}$, $X \subseteq \mathbb{N}^{\mathbb{N}}$, $s_n \in \mathbb{N}^{<\mathbb{N}}$ and $i_n = 0, 1$

Here H is a \mathbb{N} -hypergraph on $\mathbb{N}^{\mathbb{N}}$, $X \subseteq \mathbb{N}^{\mathbb{N}}$, $s_n \in \mathbb{N}^{<\mathbb{N}}$ and $i_n = 0, 1$

П L *s*₀ ĺ0 S_1 i1

The rule

If $i_m = 1$ then I must play $s_n \sqsupset s_m$ for all n > m.

When does Player I win?

Here H is a \mathbb{N} -hypergraph on $\mathbb{N}^{\mathbb{N}}$, $X \subseteq \mathbb{N}^{\mathbb{N}}$, $s_n \in \mathbb{N}^{<\mathbb{N}}$ and $i_n = 0, 1$

The rule

If $i_m = 1$ then I must play $s_n \sqsupset s_m$ for all n > m.

When does Player I win?

Case 1. $i_n = 1$ for infinitely many rounds *n*. Then $(s_n)_n$ is \sqsubseteq -cofinal in $x \in \mathbb{N}^{\mathbb{N}}$, and

I wins if $x \in X$.

 $(s_n)_n$ $(i_n)_n$

Here H is a \mathbb{N} -hypergraph on $\mathbb{N}^{\mathbb{N}}$, $X \subseteq \mathbb{N}^{\mathbb{N}}$, $s_n \in \mathbb{N}^{<\mathbb{N}}$ and $i_n = 0, 1$

The rule

If $i_m = 1$ then I must play $s_n \sqsupset s_m$ for all n > m.

When does Player I win?

Case 1. $i_n = 1$ for infinitely many rounds *n*. Then $(s_n)_n$ is \sqsubseteq -cofinal in $x \in \mathbb{N}^{\mathbb{N}}$, and

I wins if $x \in X$.

Case 2. $i_n = 0$ for all rounds n > m.

I wins if $\prod_{n\geq m} N_{s_n} \subseteq H$.

6/18

I has a winning strategy implies $\mathbb{H}_{\mathbb{N}^{\mathbb{N}}} \leq_{c} H \upharpoonright X$.

- *H* is a \mathbb{N} -hypergraph on $\mathbb{N}^{\mathbb{N}}$, $X \subseteq \mathbb{N}^{\mathbb{N}}$.
- I builds $(s_n)_n \subseteq \mathbb{N}^{<\mathbb{N}}$ and II builds $(i_n)_n \in 2^{\mathbb{N}}$.
- The rule: if $i_m = 1$ then I must play $s_n \sqsupset s_m$ for all n > m.

Case 1. $\exists^{\infty} n (i_n = 1)$ I wins if $\bigcup_n s_n = x \in X$.

I has a winning strategy implies $\mathbb{H}_{\mathbb{N}^{\mathbb{N}}} \leq_{c} H \upharpoonright X$.

- *H* is a \mathbb{N} -hypergraph on $\mathbb{N}^{\mathbb{N}}$, $X \subseteq \mathbb{N}^{\mathbb{N}}$.
- I builds $(s_n)_n \subseteq \mathbb{N}^{<\mathbb{N}}$ and II builds $(i_n)_n \in 2^{\mathbb{N}}$.
- The rule: if $i_m = 1$ then I must play $s_n \supseteq s_m$ for all n > m.

Case 1.
$$\exists^{\infty} n (i_n = 1)$$

I wins if $\bigcup_n s_n = x \in X$.

- Suppose that I has a wining strategy φ .
- Identify each $y \in \mathbb{N}^{\mathbb{N}}$ with a sequence $(i_n)_n$ as in Case 1.
- For any such y, I plays $\varphi(y) \in X$.

I has a winning strategy implies $\mathbb{H}_{\mathbb{N}^{\mathbb{N}}} \leq_{c} H \upharpoonright X$.

- *H* is a \mathbb{N} -hypergraph on $\mathbb{N}^{\mathbb{N}}$, $X \subseteq \mathbb{N}^{\mathbb{N}}$.
- I builds $(s_n)_n \subseteq \mathbb{N}^{<\mathbb{N}}$ and II builds $(i_n)_n \in 2^{\mathbb{N}}$.
- The rule: if $i_m = 1$ then I must play $s_n \supseteq s_m$ for all n > m.

Case 1.
$$\exists^{\infty} n (i_n = 1)$$

I wins if $\bigcup_n s_n = x \in X$.

- Suppose that I has a wining strategy φ .
- Identify each $y \in \mathbb{N}^{\mathbb{N}}$ with a sequence $(i_n)_n$ as in Case 1.
- For any such y, I plays $\varphi(y) \in X$.
- By construction φ is continuous.
- Using Case 2, φ is a homomorphism from $\mathbb{H}_{\mathbb{N}^{\mathbb{N}}}$ to $H \upharpoonright X$

- *H* is a \mathbb{N} -hypergraph on $\mathbb{N}^{\mathbb{N}}$, $X \subseteq \mathbb{N}^{\mathbb{N}}$.
- I builds $(s_n)_n \subseteq \mathbb{N}^{<\mathbb{N}}$ and II builds $(i_n)_n \in 2^{\mathbb{N}}$.
- The rule: if $i_m = 1$ then I must play $s_n \sqsupset s_m$ for all n > m.

Case 1.
$$\exists^{\infty} n (i_n = 1)$$
Case 2. $\forall n > m (i_n = 0)$ I wins if $\bigcup_n s_n = x \in X$.I wins if $\prod_{n \ge m} N_{s_n} \subseteq H$.

- *H* is a \mathbb{N} -hypergraph on $\mathbb{N}^{\mathbb{N}}$, $X \subseteq \mathbb{N}^{\mathbb{N}}$.
- I builds $(s_n)_n \subseteq \mathbb{N}^{<\mathbb{N}}$ and II builds $(i_n)_n \in 2^{\mathbb{N}}$.
- The rule: if $i_m = 1$ then I must play $s_n \supseteq s_m$ for all n > m.

Case 1.
$$\exists^{\infty} n (i_n = 1)$$
Case 2. $\forall n > m (i_n = 0)$ I wins if $\bigcup_n s_n = x \in X$.I wins if $\prod_{n \ge m} N_{s_n} \subseteq H$.

- Suppose that II has a wining strategy τ .
- When I plays $(x \upharpoonright n)_n$ for $x \in X$, II plays as in Case 2.

- *H* is a \mathbb{N} -hypergraph on $\mathbb{N}^{\mathbb{N}}$, $X \subseteq \mathbb{N}^{\mathbb{N}}$.
- I builds $(s_n)_n \subseteq \mathbb{N}^{<\mathbb{N}}$ and II builds $(i_n)_n \in 2^{\mathbb{N}}$.
- The rule: if $i_m = 1$ then I must play $s_n \sqsupset s_m$ for all n > m.

Case 1.
$$\exists^{\infty} n (i_n = 1)$$
Case 2. $\forall n > m (i_n = 0)$ I wins if $\bigcup_n s_n = x \in X$.I wins if $\prod_{n \ge m} N_{s_n} \subseteq H$.

- Suppose that II has a wining strategy τ .
- When I plays $(x \upharpoonright n)_n$ for $x \in X$, II plays as in Case 2.
- There is $t_x \in 2^{<\mathbb{N}}$ of maximal length such that $t_x \frown (1) \sqsubseteq \tau(x)$.
- By construction $x \mapsto t_x$ is continuous, so locally constant.

- *H* is a \mathbb{N} -hypergraph on $\mathbb{N}^{\mathbb{N}}$, $X \subseteq \mathbb{N}^{\mathbb{N}}$.
- I builds $(s_n)_n \subseteq \mathbb{N}^{<\mathbb{N}}$ and II builds $(i_n)_n \in 2^{\mathbb{N}}$.
- The rule: if $i_m = 1$ then I must play $s_n \sqsupset s_m$ for all n > m.

Case 1.
$$\exists^{\infty} n (i_n = 1)$$

I wins if $\bigcup_n s_n = x \in X$.

- Suppose that II has a wining strategy τ .
- When I plays $(x \upharpoonright n)_n$ for $x \in X$, II plays as in Case 2.
- There is $t_x \in 2^{<\mathbb{N}}$ of maximal length such that $t_x \frown (1) \sqsubseteq \tau(x)$.
- By construction $x \mapsto t_x$ is continuous, so locally constant.
- $x \mapsto t_x$ is constant on a neighborhood $N_{c(x)}$ of x.
- Using Case 2, c is an \aleph_0 -coloring of H.

First application: a dichotomy for K_{σ} spaces.

Theorem (Hurewicz, Kechris - Saint Raymond)

Suppose $OGD^{\mathbb{N}}(\Gamma)$. Given $Y \subseteq X$, $Y \in \Gamma$, exactly one holds:

- Y is contained in a K_{σ} subset of X
- there is a closed cont. injection $\varphi : \mathbb{N}^{\mathbb{N}} \to X$ ranging in Y.

Sketch of proof. Consider H_Y the hypergraph of all injective sequences in Y with no convergent subsequences.

First application: a dichotomy for K_{σ} spaces.

Theorem (Hurewicz, Kechris - Saint Raymond)

Suppose $OGD^{\mathbb{N}}(\Gamma)$. Given $Y \subseteq X$, $Y \in \Gamma$, exactly one holds:

- Y is contained in a K_σ subset of X
- there is a closed cont. injection $\varphi : \mathbb{N}^{\mathbb{N}} \to X$ ranging in Y.

Sketch of proof. Consider H_Y the hypergraph of all injective sequences in Y with no convergent subsequences.

- H_Y is box-open in $Y^{\mathbb{N}}$.
- If $\chi(H_Y) \leq \aleph_0$ then Y is contained in a K_σ set.

First application: a dichotomy for K_{σ} spaces.

Theorem (Hurewicz, Kechris - Saint Raymond)

Suppose $OGD^{\mathbb{N}}(\Gamma)$. Given $Y \subseteq X$, $Y \in \Gamma$, exactly one holds:

- Y is contained in a K_σ subset of X
- there is a closed cont. injection $\varphi : \mathbb{N}^{\mathbb{N}} \to X$ ranging in Y.

Sketch of proof. Consider H_Y the hypergraph of all injective sequences in Y with no convergent subsequences.

- H_Y is box-open in $Y^{\mathbb{N}}$.
- If $\chi(H_Y) \leq \aleph_0$ then Y is contained in a K_σ set.
- Otherwise, OGD(Γ) gives us φ ...

It is continuous and injective, to see that it is closed, take $(x_n)_n$ in $\mathbb{N}^{\mathbb{N}}$ and suppose $\varphi(x_n) \to y$.

If $(x_n)_n$ has no convergent subsequence, it contains a subsequence of a $\mathbb{H}_{\mathbb{N}^{\mathbb{N}}}$ -hyperedge, but then $(\varphi(x_n))_n$ cannot converge.

Second application: the Hurewicz dichotomy

- Denote $\mathbb{N}^{\mathbb{N}}_*$ the space $\mathbb{N}^{\mathbb{N}} \cup \{s \frown (\infty) \mid s \in \mathbb{N}^{<\mathbb{N}}\}.$
- Equipped with the smallest topology making both $\{t\}$ and $\mathcal{N}_t = \{s \in \mathbb{N}^{\mathbb{N}}_* \mid t \sqsubseteq s\}$ clopen.

Second application: the Hurewicz dichotomy

- Denote $\mathbb{N}^{\mathbb{N}}_*$ the space $\mathbb{N}^{\mathbb{N}} \cup \{s \frown (\infty) \mid s \in \mathbb{N}^{<\mathbb{N}}\}.$
- Equipped with the smallest topology making both $\{t\}$ and $\mathcal{N}_t = \{s \in \mathbb{N}^{\mathbb{N}}_* \mid t \sqsubseteq s\}$ clopen.
- It is homeomorphic to the Cantor space.
- The Baire space $\mathbb{N}^{\mathbb{N}}$ is a G_{δ} subset that is not F_{σ} .

Second application: the Hurewicz dichotomy

• Denote $\mathbb{N}^{\mathbb{N}}_*$ the space $\mathbb{N}^{\mathbb{N}} \cup \{s \land (\infty) \mid s \in \mathbb{N}^{<\mathbb{N}}\}.$

- Equipped with the smallest topology making both $\{t\}$ and $\mathcal{N}_t = \{s \in \mathbb{N}^{\mathbb{N}}_* \mid t \sqsubseteq s\}$ clopen.
- It is homeomorphic to the Cantor space.
- The Baire space $\mathbb{N}^{\mathbb{N}}$ is a G_{δ} subset that is not F_{σ} .
- A map $f : X \to Y$ reduces $A \subseteq X$ to $B \subseteq Y$ iff $f^{-1}(B) = A$.

```
Theorem (Hurewicz, Kechris-Louveau-Woodin)

Assume OGD^{\mathbb{N}}(\Gamma). Given A \subseteq X, A \in \Gamma, exactly one holds:

• A is F_{\sigma}

• there is a continuous map \varphi : \mathbb{N}_*^{\mathbb{N}} \to X reducing \mathbb{N}^{\mathbb{N}} to A.
```

Theorem (Hurewicz, Kechris-Louveau-Woodin) Assume $OGD^{\mathbb{N}}(\Gamma)$. Given $A \subseteq X$, $A \in \Gamma$, exactly one holds:

- A is F_{σ}
- there is a continuous map $\varphi : \mathbb{N}^{\mathbb{N}}_* \to X$ reducing $\mathbb{N}^{\mathbb{N}}$ to A.

Take H_A the following hypergraph on A:

$$\{(x_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}\mid x_n\to x\notin A\}$$

Theorem (Hurewicz, Kechris-Louveau-Woodin)

Assume $OGD^{\mathbb{N}}(\Gamma)$. Given $A \subseteq X$, $A \in \Gamma$, exactly one holds:

- A is F_{σ}
- there is a continuous map $\varphi : \mathbb{N}^{\mathbb{N}}_* \to X$ reducing $\mathbb{N}^{\mathbb{N}}$ to A.

Take H_A the following hypergraph on A:

$$\{(x_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}\mid x_n\to x\notin A\}$$

If $B \subseteq A$ is H_A -independent, then $\overline{B} \subseteq A$. So $\chi(H_A) \leq \aleph_0$ implies A is F_{σ} .

Theorem (Hurewicz, Kechris-Louveau-Woodin)

Assume $OGD^{\mathbb{N}}(\Gamma)$. Given $A \subseteq X$, $A \in \Gamma$, exactly one holds:

- A is F_{σ}
- there is a continuous map $\varphi : \mathbb{N}^{\mathbb{N}}_* \to X$ reducing $\mathbb{N}^{\mathbb{N}}$ to A.

Take H_A the following hypergraph on A:

$$\{(x_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}\mid x_n\to x\notin A\}$$

If $B \subseteq A$ is H_A -independent, then $\overline{B} \subseteq A$. So $\chi(H_A) \leq \aleph_0$ implies A is F_{σ} . Otherwise, as H_A is box-open..

Theorem (Hurewicz, Kechris-Louveau-Woodin) Assume $OGD^{\mathbb{N}}(\Gamma)$. Given $A \subseteq X$, $A \in \Gamma$, exactly one holds: • A is F_{σ} • there is a continuous map $\varphi : \mathbb{N}^{\mathbb{N}}_{*} \to X$ reducing $\mathbb{N}^{\mathbb{N}}$ to A.

There is a continuous map $\varphi : \mathbb{N}^{\mathbb{N}} \to A$ witnessing that $\mathbb{H}_{\mathbb{N}^{\mathbb{N}}} \leq_{c} H_{A}$.

Theorem (Hurewicz, Kechris-Louveau-Woodin) Assume $OGD^{\mathbb{N}}(\Gamma)$. Given $A \subseteq X$, $A \in \Gamma$, exactly one holds: • A is F_{σ}

• there is a continuous map $\varphi : \mathbb{N}^{\mathbb{N}}_* \to X$ reducing $\mathbb{N}^{\mathbb{N}}$ to A.

There is a continuous map $\varphi : \mathbb{N}^{\mathbb{N}} \to A$ witnessing that $\mathbb{H}_{\mathbb{N}^{\mathbb{N}}} \leq_{c} H_{A}$. Fix $s \in \mathbb{N}^{<\mathbb{N}}$, and notice that for any $x \in \mathbb{N}^{\mathbb{N}}$ there is an $x_{s} \in X \setminus A$ such that

$$\varphi(s \frown (n) \frown x) \longrightarrow x_s$$

Theorem (Hurewicz, Kechris-Louveau-Woodin) Assume $OGD^{\mathbb{N}}(\Gamma)$. Given $A \subseteq X$, $A \in \Gamma$, exactly one holds: • A is F_{σ}

• there is a continuous map $\varphi : \mathbb{N}^{\mathbb{N}}_* \to X$ reducing $\mathbb{N}^{\mathbb{N}}$ to A.

There is a continuous map $\varphi : \mathbb{N}^{\mathbb{N}} \to A$ witnessing that $\mathbb{H}_{\mathbb{N}^{\mathbb{N}}} \leq_{c} H_{A}$. Fix $s \in \mathbb{N}^{<\mathbb{N}}$, and notice that for any $x \in \mathbb{N}^{\mathbb{N}}$ there is an $x_{s} \in X \setminus A$ such that

$$\varphi(s \frown (n) \frown x) \longrightarrow x_s$$

For $y \neq x$, we have $y_s = x_s$, otherwise by looking at $(\varphi(s \frown (n) \frown x_n))_n$ for $x_{2n} = x$ and $x_{2n+1} = y$ we would have a contradiction.

Theorem (Hurewicz, Kechris-Louveau-Woodin) Assume $OGD^{\mathbb{N}}(\Gamma)$. Given $A \subseteq X$, $A \in \Gamma$, exactly one holds: • A is F_{σ} • there is a continuous map $\varphi : \mathbb{N}_*^{\mathbb{N}} \to X$ reducing $\mathbb{N}^{\mathbb{N}}$ to A.

Then

$$ar{arphi}: \mathbb{N}^{\mathbb{N}}_{*} \longrightarrow X$$
 $s \longrightarrow egin{cases} arphi(s) & ext{if } s \in \mathbb{N}^{\mathbb{N}} \ x_{s} & ext{otherwise.} \end{cases}$

is a continuous reduction from $\mathbb{N}^{\mathbb{N}}$ to A.

A third application: the Jayne-Rogers theorem

OGD also gives a generalisation of the Jayne-Rogers theorem. Recall that a function is σ -continuous with closed witnesses if it can be covered by countably many continuous functions with closed domains.

Theorem

Assume $OGD^{\mathbb{N}}(\Gamma)$. For $X \in \Gamma$ and $f : X \to Y$ Borel, the following are equivalent:

- f is σ -continuous with closed witnesses,
- f is G_{δ} -measurable.

The original Jayne-Rogers theorem is the case $\Gamma = \mathbf{\Sigma}_1^1$.

Chromatic numbers and cardinal characteristics

■ A N-hypergraph is **hereditary** if it is closed under subsequences.

It is the case in our applications.

Chromatic numbers and cardinal characteristics

■ A N-hypergraph is **hereditary** if it is closed under subsequences.

It is the case in our applications.

- Recall the definition of the **dominating number** 0:
- For c, d in $\mathbb{N}^{\mathbb{N}}$, say that d eventually dominates c in case $c(n) \leq d(n)$ for cofinitely many n.
- ∂ is the least cardinality of a cofinal family of eventually dominating elements of N^N.

Chromatic numbers and cardinal characteristics

■ A N-hypergraph is **hereditary** if it is closed under subsequences.

It is the case in our applications.

- Recall the definition of the **dominating number** 0:
- For c, d in $\mathbb{N}^{\mathbb{N}}$, say that d eventually dominates c in case $c(n) \leq d(n)$ for cofinitely many n.
- ∂ is the least cardinality of a cofinal family of eventually dominating elements of N^N.

Theorem

Assume $OGD^{\mathbb{N}}(\Gamma)$. For $X \in \Gamma$ and H a box-open hereditary \mathbb{N} -hypergraph on X, either $\chi(H) \leq \aleph_0$ of $\chi(H) \geq \mathfrak{d}$.

Hereditary hypergraphs

Theorem

Assume $OGD^{\mathbb{N}}(\Gamma)$. For $X \in \Gamma$ and H a box-open hereditary \mathbb{N} -hypergraph on X, either $\chi(H) \leq \aleph_0$ of $\chi(H) \geq \mathfrak{d}$.

Hereditary hypergraphs

Theorem

Assume $OGD^{\mathbb{N}}(\Gamma)$. For $X \in \Gamma$ and H a box-open hereditary \mathbb{N} -hypergraph on X, either $\chi(H) \leq \aleph_0$ of $\chi(H) \geq \mathfrak{d}$.

Sketch of proof. $\mathbb{H}_{\mathbb{N}^{\mathbb{N}}}$ is not hereditary, so let's look at a hereditary version. Call $(\mathbb{N})^{\mathbb{N}}$ the injective sequences of $\mathbb{N}^{\mathbb{N}}$.

 $\mathbb{H}_{\mathbb{N}^{\mathbb{N}}}' = \{ (s \frown (i_n) \frown \mathbf{b}(n))_{n \in \mathbb{N}} \mid s \in \mathbb{N}^{<\mathbb{N}}, (i_n)_n \in (\mathbb{N})^{\mathbb{N}}, \mathbf{b} \in (\mathbb{N}^{\mathbb{N}})^{\mathbb{N}} \}$

Hereditary hypergraphs

Theorem

Assume $OGD^{\mathbb{N}}(\Gamma)$. For $X \in \Gamma$ and H a box-open hereditary \mathbb{N} -hypergraph on X, either $\chi(H) \leq \aleph_0$ of $\chi(H) \geq \mathfrak{d}$.

Sketch of proof. $\mathbb{H}_{\mathbb{N}^{\mathbb{N}}}$ is not hereditary, so let's look at a hereditary version. Call $(\mathbb{N})^{\mathbb{N}}$ the injective sequences of $\mathbb{N}^{\mathbb{N}}$.

$$\mathbb{H}_{\mathbb{N}^{\mathbb{N}}}' = \{ (s \frown (i_n) \frown \mathbf{b}(n))_{n \in \mathbb{N}} \mid s \in \mathbb{N}^{<\mathbb{N}}, (i_n)_n \in (\mathbb{N})^{\mathbb{N}}, \mathbf{b} \in (\mathbb{N}^{\mathbb{N}})^{\mathbb{N}} \}$$

Since $A \subseteq \mathbb{N}^{\mathbb{N}}$ is $\mathbb{H}'_{\mathbb{N}^{\mathbb{N}}}$ -independent iff \overline{A} is compact, $\chi(\mathbb{H}'_{\mathbb{N}^{\mathbb{N}}}) = \mathfrak{d}$. Notice now that if H is hereditary and $\mathbb{H}_{\mathbb{N}^{\mathbb{N}}} \leq_{c} H$, then $\mathbb{H}'_{\mathbb{N}^{\mathbb{N}}} \leq_{c} H$.

The general case

- The covering number of a σ-ideal I on a set X, denoted by cov(I), is the least cardinality of a family of elements of I covering X.
- Call \mathcal{M} the ideal of meager sets.

Theorem

Assume $OGD^{D}(\Gamma)$. For $X \in \Gamma$ and H a box-open D-hypergraph on X, either $\chi(H) \leq \aleph_0$ of $\chi(H) \geq cov(\mathcal{M})$.

Since $\chi(\mathbb{H}_{\mathbb{N}^{\mathbb{N}}}) = cov(\mathcal{M})$, this bound cannot be strengthened in the general case. However..

Stronger bounds in the case D finite.

Notice that $\mathbb{H}_{2^{\mathbb{N}}}$ is the complete graph on $2^{\mathbb{N}}$, so the case D = 2 is trivial.

Theorem

Assume $OGD(\Gamma)$. For $X \in \Gamma$ and G an open graph on X, either $\chi(H) \leq \aleph_0$ of $\chi(H) \geq \mathfrak{c}$.

Stronger bounds in the case D finite.

Notice that $\mathbb{H}_{2^{\mathbb{N}}}$ is the complete graph on $2^{\mathbb{N}}$, so the case D = 2 is trivial.

Theorem

Assume OGD(Γ). For $X \in \Gamma$ and G an open graph on X, either $\chi(H) \leq \aleph_0$ of $\chi(H) \geq \mathfrak{c}$.

Call ${\mathcal N}$ the ideal of null sets.

Call b the least cardinality of a family $\mathcal{F} \subseteq \mathbb{N}^{\mathbb{N}}$ such that for all $c \in \mathbb{N}^{\mathbb{N}}$ there is a $d \in \mathcal{F}$ that is not eventually dominated by c.

Theorem

For $2 \leq D < \aleph_0$, assume OGD(Γ). For $X \in \Gamma$ and H an box-open *D*-hypergraph on X, either $\chi(H) \leq \aleph_0$ of $\chi(H) \geq \text{cov}(\mathcal{N}) \cdot \mathfrak{b}$.

Stronger bounds in the case D finite.

Notice that $\mathbb{H}_{2^{\mathbb{N}}}$ is the complete graph on $2^{\mathbb{N}}$, so the case D = 2 is trivial.

Theorem

Assume OGD(Γ). For $X \in \Gamma$ and G an open graph on X, either $\chi(H) \leq \aleph_0$ of $\chi(H) \geq \mathfrak{c}$.

Call \mathcal{N} the ideal of null sets.

Call b the least cardinality of a family $\mathcal{F} \subseteq \mathbb{N}^{\mathbb{N}}$ such that for all $c \in \mathbb{N}^{\mathbb{N}}$ there is a $d \in \mathcal{F}$ that is not eventually dominated by c.

Theorem

For $2 \leq D < \aleph_0$, assume OGD(Γ). For $X \in \Gamma$ and H an box-open *D*-hypergraph on X, either $\chi(H) \leq \aleph_0$ of $\chi(H) \geq \text{cov}(\mathcal{N}) \cdot \mathfrak{b}$.

Thank you!