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Definition

A function f : X → Y between topological spaces is called
Darboux if for every connected set C ⊂ X the image f (C ) is
connected.

It is clear that each continuous function is Darboux.
The function

f (x) =

{
sin( 1

x ) if x 6= 0;

0 if x = 0.

is Darboux but not continuous.

Theorem (Darboux, 1875)

For any differentiable function f : R→ R the derivative is Darboux
(but not necessarily continuous).
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Tanaka-Pervin-Levine Theorem

A topological space X is caleld semilocally-connected if X has a
base of the topology consisting of open sets U ⊂ X whose
complements have finitely many connected components.
The Euclidean spaces Rn are semilocally-connected.

Theorem (Tanaka, 1955; Pervin, Levine, 1958)

A bijective map f : X → Y between semilocally-connected
T1-spaces is a homeomorphism iff both f and f −1 are Darboux.

This theorem follows from a more general

Lemma

A map f : X → Y to a semilocally-connected T1-space Y is
continuous if f is Darboux and for any connected set C ⊂ Y the
preimage f −1(C ) has finitely many connected components.
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The proof of Lemma

Lemma

A map f : X → Y to a semilocally-connected T1-space Y is
continuous if f is Darboux and for any connected set C ⊂ Y the
preimage f −1(C ) has finitely many connected components.

Proof: Asuming that f is discontinuous at some point x ∈ X , we can
find a neighborhood Oy of y := f (x) whose preimage f −1(Oy ) is not a
neighborhood of x . Since Y is semilocally-connected, we can replace Oy

by a smaller neighborhood and assume that Y \ Oy has only finitely
many connected components C1, . . . ,Cn. By our assumption, for every
i ≤ n the set f −1(Ci ) has finitely many connected components
Ci,1, . . . ,Ci,ni . Since

x ∈ X \ f −1(Oy ) = f −1(Y \ Oy ) =
⋃n

i=1

⋃ni
j=1 Ci,j ,

there exist i , j such that x ∈ Ci,j . Then the subset C := {x} ∪ Ci,j is
connected and so is its image f (C ) = {f (x)} ∪ f (Ci,j). On the other
hand, the singleton {x} = f (C ) ∩ Oy is clopen in f (C ), so f (C ) is not
connected.
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Wong’s Problem

Theorem (Tanaka, 1955; Pervin, Levine, 1958)

A bijective map f : X → Y between semilocally-connected
T1-spaces is a homeomorphism iff both f and f −1 are Darboux.

On the other hand, the Invariance of Domain Principle implies

Theorem

Each continuous bijection of Rn is a homeomorphism.

Problem (Wong, 2016)

Is each Darboux bijection of Rn a homeomorphism?

For n = 1 the answer is “yes”! For n ≥ 2 the problem is still open!
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A Generalized Problem and a Partial Answer

To put Wong’s Problem into a wider context,
let us ask a more

General Problem

Recognize pairs of topological spaces X ,Y such that each Darboux
injection (or bijection) f : X → Y is continuous (homeomorphism).

Partial Answer = Our Main Theorem

A Darboux injection f : X → Y between metrizable spaces is
continuous if one of the following conditions is satisfied:

1 Y is a 1-manifold and X is compact and connected;

2 Y is a 2-manifold and X is a closed 2-manifold;

3 Y is a 3-manifold and X is a simply-connected closed
3-manifold.
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Main Theorem with necessary definitions

Main Theorem

A Darboux injection f : X → Y between metrizable spaces is
continuous if one of the following conditions is satisfied:

1 Y is a 1-manifold and X is compact and connected;

2 Y is a 2-manifold and X is a closed 2-manifold;

3 Y is a 3-manifold and X is a simply-connected closed
3-manifold.

A metrizable space X is called

an n-manifold if each point x ∈ X has a neighborhood,
homeomorphic to an open subset of the closed half-space
Rn
+ := {(x1, . . . , xn) ∈ Rn : x1 ≥ 0};

a closed n-manifold if X is compact and each point of X has
a neighborhood homeomorphic to Rn.

A topological space X is simply-connected if X is path-connected
and has trivial fundamental group π1(X ).
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Separators and the Key Lemma

A subset S ⊂ X is called a separator of X if X \ S is disconnected.

Lemma

Any separator S of a T3-space X contains a closed separator of X .

Proof: If S has a non-empty interior, then we can choose a non-empty
open set U ⊂ X such that Ū ⊂ S , and conclude that the boundary
Ū \ U ⊂ S is a closed separator of X .
If S has empty interior, then X \ S is dense in X . Since X \ S is disjoint,
there are open sets U,V ⊂ X such that X \ S ⊂ U ∪ V and the
U ∩ (X \ S) and V ∩ (X \ S) are disjoint and non-empty. Since X \ S is
dense, U ∩ (X \ S) ∩ V = ∅ implies U ∩ V = ∅.
Then L := X \ (U ∪ V ) ⊂ S is a required closed separator of X in S .

Key Lemma

If f : X → Y is a Darboux surjection, then for any separator
S ⊂ Y the preimage f −1(S) separates of X .
If X is regular, then f −1(S) contains a closed separator of X .
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Ū \ U ⊂ S is a closed separator of X .
If S has empty interior, then X \ S is dense in X . Since X \ S is disjoint,
there are open sets U,V ⊂ X such that X \ S ⊂ U ∪ V and the
U ∩ (X \ S) and V ∩ (X \ S) are disjoint and non-empty. Since X \ S is
dense, U ∩ (X \ S) ∩ V = ∅ implies U ∩ V = ∅.
Then L := X \ (U ∪ V ) ⊂ S is a required closed separator of X in S .

Key Lemma

If f : X → Y is a Darboux surjection, then for any separator
S ⊂ Y the preimage f −1(S) separates of X .
If X is regular, then f −1(S) contains a closed separator of X .

T.Banakh The continuity of Darboux functions between manifolds



8/19

Separators and the Key Lemma

A subset S ⊂ X is called a separator of X if X \ S is disconnected.

Lemma

Any separator S of a T3-space X contains a closed separator of X .

Proof: If S has a non-empty interior, then we can choose a non-empty
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Varieties

In fact, Main Theorem holds not only for Darboux injections into
n-manifolds but for generalizations of n-manifolds called n-varieties.
The definition of an n-variety is inductive.

Definition

A metrizable space Y is

(1) a 1-variety if each point y ∈ Y has a neighborhood
homeomorphic to R;

(n) an (n + 1)-variety for some n ∈ N if

each connected component of Y is semilocally-connected and
for each convergent sequence {yn}n∈ω ⊂ Y and connected
subset C ⊂ Y containing more than one point, there exists a
connected compact n-variety S ⊂ Y such that C \ S is
disconnected and S contains infinitely many points yn.

By induction we can show that each n-manifold of dimension
n ≥ 2 is an n-variety.
The Sierpinski carpet is a 2-variety but not a 2-manifold.

T.Banakh The continuity of Darboux functions between manifolds



9/19

Varieties

In fact, Main Theorem holds not only for Darboux injections into
n-manifolds but for generalizations of n-manifolds called n-varieties.
The definition of an n-variety is inductive.

Definition

A metrizable space Y is

(1) a 1-variety if each point y ∈ Y has a neighborhood
homeomorphic to R;

(n) an (n + 1)-variety for some n ∈ N if

each connected component of Y is semilocally-connected and
for each convergent sequence {yn}n∈ω ⊂ Y and connected
subset C ⊂ Y containing more than one point, there exists a
connected compact n-variety S ⊂ Y such that C \ S is
disconnected and S contains infinitely many points yn.

By induction we can show that each n-manifold of dimension
n ≥ 2 is an n-variety.
The Sierpinski carpet is a 2-variety but not a 2-manifold.

T.Banakh The continuity of Darboux functions between manifolds



9/19

Varieties

In fact, Main Theorem holds not only for Darboux injections into
n-manifolds but for generalizations of n-manifolds called n-varieties.
The definition of an n-variety is inductive.

Definition

A metrizable space Y is

(1) a 1-variety if each point y ∈ Y has a neighborhood
homeomorphic to R;

(n) an (n + 1)-variety for some n ∈ N if

each connected component of Y is semilocally-connected and
for each convergent sequence {yn}n∈ω ⊂ Y and connected
subset C ⊂ Y containing more than one point, there exists a
connected compact n-variety S ⊂ Y such that C \ S is
disconnected and S contains infinitely many points yn.

By induction we can show that each n-manifold of dimension
n ≥ 2 is an n-variety.
The Sierpinski carpet is a 2-variety but not a 2-manifold.

T.Banakh The continuity of Darboux functions between manifolds



9/19

Varieties

In fact, Main Theorem holds not only for Darboux injections into
n-manifolds but for generalizations of n-manifolds called n-varieties.
The definition of an n-variety is inductive.

Definition

A metrizable space Y is

(1) a 1-variety if each point y ∈ Y has a neighborhood
homeomorphic to R;

(n) an (n + 1)-variety for some n ∈ N if

each connected component of Y is semilocally-connected and
for each convergent sequence {yn}n∈ω ⊂ Y and connected
subset C ⊂ Y containing more than one point, there exists a
connected compact n-variety S ⊂ Y such that C \ S is
disconnected and S contains infinitely many points yn.

By induction we can show that each n-manifold of dimension
n ≥ 2 is an n-variety.
The Sierpinski carpet is a 2-variety but not a 2-manifold.

T.Banakh The continuity of Darboux functions between manifolds



9/19

Varieties

In fact, Main Theorem holds not only for Darboux injections into
n-manifolds but for generalizations of n-manifolds called n-varieties.
The definition of an n-variety is inductive.

Definition

A metrizable space Y is

(1) a 1-variety if each point y ∈ Y has a neighborhood
homeomorphic to R;

(n) an (n + 1)-variety for some n ∈ N if

each connected component of Y is semilocally-connected and
for each convergent sequence {yn}n∈ω ⊂ Y and connected
subset C ⊂ Y containing more than one point, there exists a
connected compact n-variety S ⊂ Y such that C \ S is
disconnected and S contains infinitely many points yn.

By induction we can show that each n-manifold of dimension
n ≥ 2 is an n-variety.
The Sierpinski carpet is a 2-variety but not a 2-manifold.

T.Banakh The continuity of Darboux functions between manifolds



9/19

Varieties

In fact, Main Theorem holds not only for Darboux injections into
n-manifolds but for generalizations of n-manifolds called n-varieties.
The definition of an n-variety is inductive.

Definition

A metrizable space Y is

(1) a 1-variety if each point y ∈ Y has a neighborhood
homeomorphic to R;

(n) an (n + 1)-variety for some n ∈ N if

each connected component of Y is semilocally-connected and
for each convergent sequence {yn}n∈ω ⊂ Y and connected
subset C ⊂ Y containing more than one point, there exists a
connected compact n-variety S ⊂ Y such that C \ S is
disconnected and S contains infinitely many points yn.

By induction we can show that each n-manifold of dimension
n ≥ 2 is an n-variety.
The Sierpinski carpet is a 2-variety but not a 2-manifold.

T.Banakh The continuity of Darboux functions between manifolds



10/19

General Main Theorem

General Main Theorem

A Darboux injection f : X → Y between metrizable spaces is
continuous if one of the following conditions is satisfied:

1 Y is a 1-variety and X is compact and connected;

2 Y is a 2-variety and X is a closed 2-manifold;

3 Y is a 3-variety and X is a simply-connected closed
3-manifold.

T.Banakh The continuity of Darboux functions between manifolds



11/19

The case of dimension 1

Theorem 1

Any Darboux injection f : X → S1 from a compact connected
space X to the circle S1 is a topological embedding.

Proof.

We prove that:
1. Any Darboux injection (0, 1)→ R is a topological embedding.
2. Any Darboux injection [0, 1]→ R is a topological embedding.
3. Any Darboux injection X → R from a path-connected space X
is a topological embedding.
4. A connected compact metrizable space X admitting a Darboux
injection X → S1 to a circle is locally connected.
5. Any Darboux injection f : X → S1 from a compact connected
space X into the circle S1 is a topological embedding.
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Multiacrs

A compact metrizable space X is called a multiarc if each
connected component of X is homeomorphic to a segment
[a, b] ⊂ R with a ≤ b.
Using Poincaré Duality between Čech cohomologies of a closed
subset A in a closed manifold and singular homologies of the
complement M \ A it is possible to prove two lemmas:

Lemma

For any multiarc A in a connected closed n-manifold of dimension
n ≥ 2 the complement M \ A is connected.

Lemma

Let A be a multiarc in a closed n-manifold M of dimension n ≥ 3.
If for some coefficient group G and some positive k < n the
homology group Hk(M;G ) is trivial, then Hk(M \ A;G ) = 0, too.
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subset A in a closed manifold and singular homologies of the
complement M \ A it is possible to prove two lemmas:

Lemma

For any multiarc A in a connected closed n-manifold of dimension
n ≥ 2 the complement M \ A is connected.

Lemma

Let A be a multiarc in a closed n-manifold M of dimension n ≥ 3.
If for some coefficient group G and some positive k < n the
homology group Hk(M;G ) is trivial, then Hk(M \ A;G ) = 0, too.

T.Banakh The continuity of Darboux functions between manifolds



13/19

Main Theorem in dimension 2

Theorem 2

Any Darboux injection f : X → Y of a connected closed
2-manifold X to a connected 2-variety is a homeomorphism.

Theorem 2g

Let X be a compact space that contains more than one point and
cannot be separated by a multiarc. Any Darboux injection
f : X → Y to a connected 2-variety Y is a homeomorphism.

Lemma 2

Let X ,Y and f be from Theorem 2g. For any sequence
{yn}n∈ω ⊂ Y that converges to a point y ∈ Y there exists a
topological circle S ⊂ Y such that S contains infinitely many
points yn and f �f −1(S) : f −1(S)→ S is a homeomorphism.
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Proof of Lemma 2

Since Y is a 2-variety, there exists a topological circle S ⊂ Y such
that f (X ) \ S is disconnected and S contains infinitely many
points yn.
Since f is Darboux, f −1(S) is a separator of X and by Lemma, it
contains a closed separator L ⊂ X .
By Theorem 1, for any connected complement C of L the
restriction f �C : C → S is a topological embedding. If f (C ) 6= S ,
then f (C ) is either a singleton or an arc.
Since X cannot be separated by a multiarc, for some connected
component C of L we have f (C ) = S . Then f −1(S) = C and
f �f −1(S) : f −1(S)→ S is a homeomorphism.
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Main theorem in dimension 3

Theorem 3

Any Darboux injection f : X → Y from a simply-connected closed
3-manifold X to a connected 3-variety is a homeomorphism.

Theorem 3g

Let X be a Peano continuum such that the complement X \ A of
any multiarc A ⊂ X has trivial homology group H1(X \ A;G ) for
some coefficient group G . Then any Darboux injection f : X → Y
to a connected 3-variety Y is a homeomorphism.

Lemma 3

Let X ,Y f be as in Theorem 3g. For any sequence {yn}n∈ω ⊂ Y
that converges to a point y ∈ Y there exists a connected compact
2-variety S ⊂ Y such that S contains infinitely many points yn and
f �f −1(S) : f −1(S)→ S is a homeomorphism.

T.Banakh The continuity of Darboux functions between manifolds



15/19

Main theorem in dimension 3

Theorem 3

Any Darboux injection f : X → Y from a simply-connected closed
3-manifold X to a connected 3-variety is a homeomorphism.

Theorem 3g

Let X be a Peano continuum such that the complement X \ A of
any multiarc A ⊂ X has trivial homology group H1(X \ A;G ) for
some coefficient group G . Then any Darboux injection f : X → Y
to a connected 3-variety Y is a homeomorphism.

Lemma 3

Let X ,Y f be as in Theorem 3g. For any sequence {yn}n∈ω ⊂ Y
that converges to a point y ∈ Y there exists a connected compact
2-variety S ⊂ Y such that S contains infinitely many points yn and
f �f −1(S) : f −1(S)→ S is a homeomorphism.

T.Banakh The continuity of Darboux functions between manifolds



15/19

Main theorem in dimension 3

Theorem 3

Any Darboux injection f : X → Y from a simply-connected closed
3-manifold X to a connected 3-variety is a homeomorphism.

Theorem 3g

Let X be a Peano continuum such that the complement X \ A of
any multiarc A ⊂ X has trivial homology group H1(X \ A;G ) for
some coefficient group G . Then any Darboux injection f : X → Y
to a connected 3-variety Y is a homeomorphism.

Lemma 3

Let X ,Y f be as in Theorem 3g. For any sequence {yn}n∈ω ⊂ Y
that converges to a point y ∈ Y there exists a connected compact
2-variety S ⊂ Y such that S contains infinitely many points yn and
f �f −1(S) : f −1(S)→ S is a homeomorphism.

T.Banakh The continuity of Darboux functions between manifolds



16/19

Proof of Lemma 3

By the definition of a 3-variety, there exists a compact connected
2-variety S ⊂ Y such that f (X ) \ S is disconnected and S contains
infinitely many points yn. By Lemma on separators, f −1(S)
contains some closed separator C of X . By the Zorn Lemma, we
can assume that C is a minimal closed separator between some
points a, b of X .
Using the Mayer-Vietoris exact sequence, we can prove that C is
connected and moreovers, cannot be separated by a multiarc. So,
we can apply Theorem 2 and conclude that the restriction
f �C : C → S is a homeomorphism. By injectivity of f , C = f −1(S)
and hence f �f −1(S) : f −1(S)→ S is a homeomorphism.
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Open Problems

Problem 1 (Wong)

Is any Darboux bijection of Rn continuous?

Problem 2

Is any Darboux bijection of the plane continuous?

Problem 3

Is any Darboux bijection of the 3-dimensional torus continuous?

Problem 4

Is any Darboux bijection of the 4-dimensional sphere continuous?
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Dziȩkujȩ!

Grazie!
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