The continuity of Darboux functions between manifolds

Taras Banakh

Lviv & Kielce

Wrocław, 17 September 2018

A function $f : X \to Y$ between topological spaces is called *Darboux* if for every connected set $C \subset X$ the image f(C) is connected.

It is clear that each continuous function is Darboux. The function

$$f(x) = \begin{cases} \sin(\frac{1}{x}) & \text{if } x \neq 0; \\ 0 & \text{if } x = 0. \end{cases}$$

is Darboux but not continuous.

Theorem (Darboux, 1875)

For any differentiable function $f : \mathbb{R} \to \mathbb{R}$ the derivative is Darboux (but not necessarily continuous).

<ロ> <四> <四> <四> <四> <四> <四</p>

A function $f : X \to Y$ between topological spaces is called *Darboux* if for every connected set $C \subset X$ the image f(C) is connected.

It is clear that each continuous function is Darboux. The function

$$f(x) = \begin{cases} \sin(\frac{1}{x}) & \text{if } x \neq 0; \\ 0 & \text{if } x = 0. \end{cases}$$

is Darboux but not continuous.

Theorem (Darboux, 1875)

For any differentiable function $f : \mathbb{R} \to \mathbb{R}$ the derivative is Darboux (but not necessarily continuous).

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 のへで

A function $f : X \to Y$ between topological spaces is called *Darboux* if for every connected set $C \subset X$ the image f(C) is connected.

It is clear that each continuous function is Darboux. The function

$$f(x) = \begin{cases} \sin(\frac{1}{x}) & \text{if } x \neq 0; \\ 0 & \text{if } x = 0. \end{cases}$$

is Darboux but not continuous.

Theorem (Darboux, 1875)

For any differentiable function $f : \mathbb{R} \to \mathbb{R}$ the derivative is Darboux (but not necessarily continuous).

A function $f : X \to Y$ between topological spaces is called *Darboux* if for every connected set $C \subset X$ the image f(C) is connected.

It is clear that each continuous function is Darboux. The function

$$f(x) = \begin{cases} \sin(\frac{1}{x}) & \text{if } x \neq 0; \\ 0 & \text{if } x = 0. \end{cases}$$

is Darboux but not continuous.

Theorem (Darboux, 1875)

For any differentiable function $f : \mathbb{R} \to \mathbb{R}$ the derivative is Darboux (but not necessarily continuous).

<ロ> <四> <四> <三> <三> <三</p>

A topological space X is called semilocally-connected if X has a base of the topology consisting of open sets $U \subset X$ whose complements have finitely many connected components.

The Euclidean spaces \mathbb{R}^n are semilocally-connected.

Theorem (Tanaka, 1955; Pervin, Levine, 1958)

A bijective map $f : X \to Y$ between semilocally-connected T_1 -spaces is a homeomorphism iff both f and f^{-1} are Darboux.

This theorem follows from a more general

_emma

A map $f : X \to Y$ to a semilocally-connected T_1 -space Y is continuous if f is Darboux and for any connected set $C \subset Y$ the preimage $f^{-1}(C)$ has finitely many connected components.

A topological space X is called semilocally-connected if X has a base of the topology consisting of open sets $U \subset X$ whose complements have finitely many connected components. The Euclidean spaces \mathbb{R}^n are semilocally-connected.

Theorem (Tanaka, 1955; Pervin, Levine, 1958)

A bijective map $f : X \to Y$ between semilocally-connected T_1 -spaces is a homeomorphism iff both f and f^{-1} are Darboux.

This theorem follows from a more general

_emma

A map $f : X \to Y$ to a semilocally-connected T_1 -space Y is continuous if f is Darboux and for any connected set $C \subset Y$ the preimage $f^{-1}(C)$ has finitely many connected components.

・ロト ・四ト ・ヨト ・ヨト - ヨ

A topological space X is called semilocally-connected if X has a base of the topology consisting of open sets $U \subset X$ whose complements have finitely many connected components.

The Euclidean spaces \mathbb{R}^n are semilocally-connected.

Theorem (Tanaka, 1955; Pervin, Levine, 1958)

A bijective map $f : X \to Y$ between semilocally-connected T_1 -spaces is a homeomorphism iff both f and f^{-1} are Darboux.

This theorem follows from a more general

_emma

A map $f : X \to Y$ to a semilocally-connected T_1 -space Y is continuous if f is Darboux and for any connected set $C \subset Y$ the preimage $f^{-1}(C)$ has finitely many connected components.

・ロト ・四ト ・ヨト ・ヨト ・ヨー

A topological space X is called semilocally-connected if X has a base of the topology consisting of open sets $U \subset X$ whose complements have finitely many connected components.

The Euclidean spaces \mathbb{R}^n are semilocally-connected.

Theorem (Tanaka, 1955; Pervin, Levine, 1958)

A bijective map $f : X \to Y$ between semilocally-connected T_1 -spaces is a homeomorphism iff both f and f^{-1} are Darboux.

This theorem follows from a more general

Lemma

A map $f : X \to Y$ to a semilocally-connected T_1 -space Y is continuous if f is Darboux and for any connected set $C \subset Y$ the preimage $f^{-1}(C)$ has finitely many connected components.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 のへで

A map $f : X \to Y$ to a semilocally-connected T_1 -space Y is continuous if f is Darboux and for any connected set $C \subset Y$ the preimage $f^{-1}(C)$ has finitely many connected components.

Proof: Asuming that f is discontinuous at some point $x \in X$, we can find a neighborhood O_y of y := f(x) whose preimage $f^{-1}(O_y)$ is not a neighborhood of x. Since Y is semilocally-connected, we can replace O_y by a smaller neighborhood and assume that $Y \setminus O_y$ has only finitely many connected components C_1, \ldots, C_n . By our assumption, for every $i \le n$ the set $f^{-1}(C_i)$ has finitely many connected components $C_{i,1}, \ldots, C_{i,n_j}$. Since

 $x \in X \setminus f^{-1}(O_y) = f^{-1}(Y \setminus O_y) = \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} G_{i,j},$ there exist i, j such that $x \in \overline{G_{i,j}}$. Then the subset $C := \{x\} \cup G_{i,j}$ is connected and so is its image $f(C) = \{f(x)\} \cup f(G_{i,j})$. On the other hand, the singleton $\{x\} = f(C) \cap O_y$ is clopen in f(C), so f(C) is not connected.

A map $f : X \to Y$ to a semilocally-connected T_1 -space Y is continuous if f is Darboux and for any connected set $C \subset Y$ the preimage $f^{-1}(C)$ has finitely many connected components.

Proof: Asuming that f is discontinuous at some point $x \in X$, we can find a neighborhood O_y of y := f(x) whose preimage $f^{-1}(O_y)$ is not a neighborhood of x. Since Y is semilocally-connected, we can replace O_y by a smaller neighborhood and assume that $Y \setminus O_y$ has only finitely many connected components C_1, \ldots, C_n . By our assumption, for every $i \le n$ the set $f^{-1}(C_i)$ has finitely many connected components $C_{i,1}, \ldots, C_{i,n_f}$. Since

$$x \in \overline{X \setminus f^{-1}(\mathcal{O}_y)} = \overline{f^{-1}(Y \setminus \mathcal{O}_y)} = \bigcup_{i=1}^n \bigcup_{j=1}^{n_i} \overline{C_{i,j}},$$

there exist i, j such that $x \in \overline{C_{i,j}}$. Then the subset $C := \{x\} \cup C_{i,j}$ is connected and so is its image $f(C) = \{f(x)\} \cup f(C_{i,j})$. On the other hand, the singleton $\{x\} = f(C) \cap O_y$ is clopen in f(C), so f(C) is not connected.

A map $f : X \to Y$ to a semilocally-connected T_1 -space Y is continuous if f is Darboux and for any connected set $C \subset Y$ the preimage $f^{-1}(C)$ has finitely many connected components.

Proof: Asuming that f is discontinuous at some point $x \in X$, we can find a neighborhood O_y of y := f(x) whose preimage $f^{-1}(O_y)$ is not a neighborhood of x. Since Y is semilocally-connected, we can replace O_y by a smaller neighborhood and assume that $Y \setminus O_y$ has only finitely many connected components C_1, \ldots, C_n . By our assumption, for every $i \le n$ the set $f^{-1}(C_i)$ has finitely many connected components $C_{i,1}, \ldots, C_{i,n_f}$. Since

$$x \in \overline{X \setminus f^{-1}(\mathcal{O}_y)} = \overline{f^{-1}(Y \setminus \mathcal{O}_y)} = \bigcup_{i=1}^n \bigcup_{j=1}^{n_i} \overline{\mathcal{C}_{i,j}},$$

there exist i, j such that $x \in \overline{C_{i,j}}$. Then the subset $C := \{x\} \cup C_{i,j}$ is connected and so is its image $f(C) = \{f(x)\} \cup f(C_{i,j})$. On the other hand, the singleton $\{x\} = f(C) \cap O_y$ is clopen in f(C), so f(C) is not connected.

A map $f : X \to Y$ to a semilocally-connected T_1 -space Y is continuous if f is Darboux and for any connected set $C \subset Y$ the preimage $f^{-1}(C)$ has finitely many connected components.

Proof: Asuming that f is discontinuous at some point $x \in X$, we can find a neighborhood O_y of y := f(x) whose preimage $f^{-1}(O_y)$ is not a neighborhood of x. Since Y is semilocally-connected, we can replace O_y by a smaller neighborhood and assume that $Y \setminus O_y$ has only finitely many connected components C_1, \ldots, C_n . By our assumption, for every $i \le n$ the set $f^{-1}(C_i)$ has finitely many connected components $C_{i,1}, \ldots, C_{i,n_i}$. Since

there exist *i*, *j* such that $x \in \overline{C_{i,j}}$. Then the subset $C := \{x\} \cup C_{i,j}$ is connected and so is its image $f(C) = \{f(x)\} \cup f(C_{i,j})$. On the other hand, the singleton $\{x\} = f(C) \cap O_y$ is clopen in f(C), so f(C) is not connected.

A map $f : X \to Y$ to a semilocally-connected T_1 -space Y is continuous if f is Darboux and for any connected set $C \subset Y$ the preimage $f^{-1}(C)$ has finitely many connected components.

Proof: Asuming that f is discontinuous at some point $x \in X$, we can find a neighborhood O_y of y := f(x) whose preimage $f^{-1}(O_y)$ is not a neighborhood of x. Since Y is semilocally-connected, we can replace O_y by a smaller neighborhood and assume that $Y \setminus O_y$ has only finitely many connected components C_1, \ldots, C_n . By our assumption, for every $i \le n$ the set $f^{-1}(C_i)$ has finitely many connected components $C_{i,1}, \ldots, C_{i,n_i}$. Since

$$x \in \overline{X \setminus f^{-1}(O_y)} = \overline{f^{-1}(Y \setminus O_y)} = \bigcup_{i=1}^n \bigcup_{j=1}^n \overline{C_{i,j}},$$

there exist *i*, *j* such that $x \in \overline{C_{i,j}}$. Then the subset $C := \{x\} \cup C_{i,j}$ is connected and so is its image $f(C) = \{f(x)\} \cup f(C_{i,j})$. On the other hand, the singleton $\{x\} = f(C) \cap O_y$ is clopen in f(C), so f(C) is not connected.

A map $f : X \to Y$ to a semilocally-connected T_1 -space Y is continuous if f is Darboux and for any connected set $C \subset Y$ the preimage $f^{-1}(C)$ has finitely many connected components.

Proof: Asuming that f is discontinuous at some point $x \in X$, we can find a neighborhood O_y of y := f(x) whose preimage $f^{-1}(O_y)$ is not a neighborhood of x. Since Y is semilocally-connected, we can replace O_y by a smaller neighborhood and assume that $Y \setminus O_y$ has only finitely many connected components C_1, \ldots, C_n . By our assumption, for every $i \le n$ the set $f^{-1}(C_i)$ has finitely many connected components $C_{i,1}, \ldots, C_{i,n_i}$. Since

 $x \in \overline{X \setminus f^{-1}(O_y)} = \overline{f^{-1}(Y \setminus O_y)} = \bigcup_{i=1}^n \bigcup_{j=1}^{n_i} \overline{C_{i,j}},$ there exist *i*, *j* such that $x \in \overline{C_{i,j}}$. Then the subset $C := \{x\} \cup C_{i,j}$ is connected and so is its image $f(C) = \{f(x)\} \cup f(C_{i,j})$. On the other hand, the singleton $\{x\} = f(C) \cap O_y$ is clopen in f(C), so f(C) is not connected.

A map $f : X \to Y$ to a semilocally-connected T_1 -space Y is continuous if f is Darboux and for any connected set $C \subset Y$ the preimage $f^{-1}(C)$ has finitely many connected components.

Proof: Asuming that f is discontinuous at some point $x \in X$, we can find a neighborhood O_y of y := f(x) whose preimage $f^{-1}(O_y)$ is not a neighborhood of x. Since Y is semilocally-connected, we can replace O_y by a smaller neighborhood and assume that $Y \setminus O_y$ has only finitely many connected components C_1, \ldots, C_n . By our assumption, for every $i \le n$ the set $f^{-1}(C_i)$ has finitely many connected components $C_{i,1}, \ldots, C_{i,n_i}$. Since

$$x \in \overline{X \setminus f^{-1}(O_y)} = \overline{f^{-1}(Y \setminus O_y)} = \bigcup_{i=1}^n \bigcup_{j=1}^{n_i} \overline{C_{i,j}},$$

there exist i, j such that $x \in \overline{C_{i,j}}$. Then the subset $C := \{x\} \cup C_{i,j}$ is connected and so is its image $f(C) = \{f(x)\} \cup f(C_{i,j})$. On the other hand, the singleton $\{x\} = f(C) \cap O_y$ is clopen in f(C), so f(C) is not connected.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

A bijective map $f : X \to Y$ between semilocally-connected T_1 -spaces is a homeomorphism iff both f and f^{-1} are Darboux.

On the other hand, the Invariance of Domain Principle implies

Theorem

Each continuous bijection of \mathbb{R}^n is a homeomorphism.

Problem (Wong, 2016)

Is each Darboux bijection of \mathbb{R}^n a homeomorphism?

For n = 1 the answer is "yes"! For $n \ge 2$ the problem is still open!

A bijective map $f : X \to Y$ between semilocally-connected T_1 -spaces is a homeomorphism iff both f and f^{-1} are Darboux.

On the other hand, the Invariance of Domain Principle implies

Theorem

Each continuous bijection of \mathbb{R}^n is a homeomorphism.

Problem (Wong, 2016)

Is each Darboux bijection of \mathbb{R}^n a homeomorphism?

For n = 1 the answer is "yes"! For $n \ge 2$ the problem is still open!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

A bijective map $f : X \to Y$ between semilocally-connected T_1 -spaces is a homeomorphism iff both f and f^{-1} are Darboux.

On the other hand, the Invariance of Domain Principle implies

Theorem

Each continuous bijection of \mathbb{R}^n is a homeomorphism.

Problem (Wong, 2016)

Is each Darboux bijection of \mathbb{R}^n a homeomorphism?

For n = 1 the answer is "yes"! For $n \ge 2$ the problem is still open!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

A bijective map $f : X \to Y$ between semilocally-connected T_1 -spaces is a homeomorphism iff both f and f^{-1} are Darboux.

On the other hand, the Invariance of Domain Principle implies

Theorem

Each continuous bijection of \mathbb{R}^n is a homeomorphism.

Problem (Wong, 2016)

Is each Darboux bijection of \mathbb{R}^n a homeomorphism?

For n = 1 the answer is "yes"! For $n \ge 2$ the problem is still open!

A bijective map $f : X \to Y$ between semilocally-connected T_1 -spaces is a homeomorphism iff both f and f^{-1} are Darboux.

On the other hand, the Invariance of Domain Principle implies

Theorem

Each continuous bijection of \mathbb{R}^n is a homeomorphism.

Problem (Wong, 2016)

Is each Darboux bijection of \mathbb{R}^n a homeomorphism?

For n = 1 the answer is "yes"! For $n \ge 2$ the problem is still open!

A Generalized Problem and a Partial Answer

To put Wong's Problem into a wider context, let us ask a more

General Problem

Recognize pairs of topological spaces X, Y such that each Darboux injection (or bijection) $f : X \to Y$ is continuous (homeomorphism).

Partial Answer = Our Main Theorem

A Darboux injection $f : X \to Y$ between metrizable spaces is continuous if one of the following conditions is satisfied:

- Y is a 1-manifold and X is compact and connected;
- Y is a 2-manifold and X is a closed 2-manifold;
- Y is a 3-manifold and X is a simply-connected closed
 3-manifold.

<ロ> (四) (四) (三) (三) (三) (三)

A Generalized Problem and a Partial Answer

To put Wong's Problem into a wider context, let us ask a more

General Problem

Recognize pairs of topological spaces X, Y such that each Darboux injection (or bijection) $f : X \to Y$ is continuous (homeomorphism).

Partial Answer = Our Main Theorem

A Darboux injection $f : X \to Y$ between metrizable spaces is continuous if one of the following conditions is satisfied:

- Y is a 1-manifold and X is compact and connected;
- **2** Y is a 2-manifold and X is a closed 2-manifold;
- Y is a 3-manifold and X is a simply-connected closed 3-manifold.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Main Theorem

A Darboux injection $f : X \to Y$ between metrizable spaces is continuous if one of the following conditions is satisfied:

- Y is a 1-manifold and X is compact and connected;
- 2 Y is a 2-manifold and X is a closed 2-manifold;
- Y is a 3-manifold and X is a simply-connected closed 3-manifold.

A metrizable space X is called

- an *n-manifold* if each point x ∈ X has a neighborhood, homeomorphic to an open subset of the closed half-space ℝⁿ₊ := {(x₁,...,x_n) ∈ ℝⁿ : x₁ ≥ 0};
- a *closed n-manifold* if X is compact and each point of X has a neighborhood homeomorphic to \mathbb{R}^n .

A topological space X is *simply-connected* if X is path-connected and has trivial fundamental group $\pi_1(X)_{(D)}$, π_2 , π_2 , π_2 , π_2 , π_3 , π_4 , $\pi_$

Main Theorem

A Darboux injection $f : X \to Y$ between metrizable spaces is continuous if one of the following conditions is satisfied:

- Y is a 1-manifold and X is compact and connected;
- **2** Y is a 2-manifold and X is a closed 2-manifold;
- Y is a 3-manifold and X is a simply-connected closed 3-manifold.

A metrizable space X is called

- an *n-manifold* if each point x ∈ X has a neighborhood, homeomorphic to an open subset of the closed half-space Rⁿ₊ := {(x₁,...,x_n) ∈ ℝⁿ : x₁ ≥ 0};
- a *closed n-manifold* if X is compact and each point of X has a neighborhood homeomorphic to \mathbb{R}^n .

A topological space X is *simply-connected* if X is path-connected and has trivial fundamental group $\pi_1(X)_{(D)}$, π_2 , π_3 , π_4 , π_5 , $\pi_$

Main Theorem

A Darboux injection $f : X \to Y$ between metrizable spaces is continuous if one of the following conditions is satisfied:

- Y is a 1-manifold and X is compact and connected;
- **2** Y is a 2-manifold and X is a closed 2-manifold;
- Y is a 3-manifold and X is a simply-connected closed 3-manifold.

A metrizable space X is called

- an *n-manifold* if each point x ∈ X has a neighborhood, homeomorphic to an open subset of the closed half-space ℝⁿ₊ := {(x₁,...,x_n) ∈ ℝⁿ : x₁ ≥ 0};
- a *closed n-manifold* if X is compact and each point of X has a neighborhood homeomorphic to ℝⁿ.

A topological space X is *simply-connected* if X is path-connected and has trivial fundamental group $\pi_1(X)_{(1)}$, π_2 , π_3 , π_4 , π_5 , $\pi_$

Main Theorem

A Darboux injection $f : X \to Y$ between metrizable spaces is continuous if one of the following conditions is satisfied:

- Y is a 1-manifold and X is compact and connected;
- **2** Y is a 2-manifold and X is a closed 2-manifold;
- Y is a 3-manifold and X is a simply-connected closed 3-manifold.

A metrizable space X is called

- an *n-manifold* if each point x ∈ X has a neighborhood, homeomorphic to an open subset of the closed half-space ℝⁿ₊ := {(x₁,...,x_n) ∈ ℝⁿ : x₁ ≥ 0};
- a closed n-manifold if X is compact and each point of X has a neighborhood homeomorphic to ℝⁿ.

A topological space X is *simply-connected* if X is path-connected and has trivial fundamental group $\pi_1(X)$.

A subset $S \subset X$ is called a *separator* of X if $X \setminus S$ is disconnected.

Lemma

Any separator S of a T_3 -space X contains a closed separator of X.

Proof: If *S* has a non-empty interior, then we can choose a non-empty open set $U \subset X$ such that $\overline{U} \subset S$, and conclude that the boundary $\overline{U} \setminus U \subset S$ is a closed separator of *X*. If *S* has empty interior, then $X \setminus S$ is dense in *X*. Since $X \setminus S$ is disjoint, there are open sets $U, V \subset X$ such that $X \setminus S \subset U \cup V$ and the $U \cap (X \setminus S)$ and $V \cap (X \setminus S)$ are disjoint and non-empty. Since $X \setminus S$ is dense, $U \cap (X \setminus S) \cap V = \emptyset$ implies $U \cap V = \emptyset$.

Then $L := X \setminus (U \cup V) \subset S$ is a required closed separator of X in S.

Key Lemma

A subset $S \subset X$ is called a *separator* of X if $X \setminus S$ is disconnected.

Lemma

Any separator S of a T_3 -space X contains a closed separator of X.

Proof: If *S* has a non-empty interior, then we can choose a non-empty open set $U \subset X$ such that $\overline{U} \subset S$, and conclude that the boundary $\overline{U} \setminus U \subset S$ is a closed separator of *X*. If *S* has empty interior, then $X \setminus S$ is dense in *X*. Since $X \setminus S$ is disjoint, there are open sets $U, V \subset X$ such that $X \setminus S \subset U \cup V$ and the $U \cap (X \setminus S)$ and $V \cap (X \setminus S)$ are disjoint and non-empty. Since $X \setminus S$ is dense, $U \cap (X \setminus S) \cap V = \emptyset$ implies $U \cap V = \emptyset$.

Then $L := X \setminus (U \cup V) \subset S$ is a required closed separator of X in S.

Key Lemma

A subset $S \subset X$ is called a *separator* of X if $X \setminus S$ is disconnected.

Lemma

Any separator S of a T_3 -space X contains a closed separator of X.

Proof: If *S* has a non-empty interior, then we can choose a non-empty open set $U \subset X$ such that $\overline{U} \subset S$, and conclude that the boundary $\overline{U} \setminus U \subset S$ is a closed separator of *X*.

If S has empty interior, then $X \setminus S$ is dense in X. Since $X \setminus S$ is disjoint, there are open sets $U, V \subset X$ such that $X \setminus S \subset U \cup V$ and the $U \cap (X \setminus S)$ and $V \cap (X \setminus S)$ are disjoint and non-empty. Since $X \setminus S$ is dense, $U \cap (X \setminus S) \cap V = \emptyset$ implies $U \cap V = \emptyset$.

Then $L := X \setminus (U \cup V) \subset S$ is a required closed separator of X in S.

Key Lemma

A subset $S \subset X$ is called a *separator* of X if $X \setminus S$ is disconnected.

Lemma

Any separator S of a T_3 -space X contains a closed separator of X.

Proof: If *S* has a non-empty interior, then we can choose a non-empty open set $U \subset X$ such that $\overline{U} \subset S$, and conclude that the boundary $\overline{U} \setminus U \subset S$ is a closed separator of *X*. If *S* has empty interior, then $X \setminus S$ is dense in *X*. Since $X \setminus S$ is disjoint, there are open sets $U, V \subset X$ such that $X \setminus S \subset U \cup V$ and the $U \cap (X \setminus S)$ and $V \cap (X \setminus S)$ are disjoint and non-empty. Since $X \setminus S$ is dense, $U \cap (X \setminus S) \cap V = \emptyset$ implies $U \cap V = \emptyset$. Then $L := X \setminus (U \cup V) \subset S$ is a required closed separator of *X* in *S*.

Key Lemma

A subset $S \subset X$ is called a *separator* of X if $X \setminus S$ is disconnected.

Lemma

Any separator S of a T_3 -space X contains a closed separator of X.

Proof: If *S* has a non-empty interior, then we can choose a non-empty open set $U \subset X$ such that $\overline{U} \subset S$, and conclude that the boundary $\overline{U} \setminus U \subset S$ is a closed separator of *X*. If *S* has empty interior, then $X \setminus S$ is dense in *X*. Since $X \setminus S$ is disjoint, there are open sets $U, V \subset X$ such that $X \setminus S \subset U \cup V$ and the $U \cap (X \setminus S)$ and $V \cap (X \setminus S)$ are disjoint and non-empty. Since $X \setminus S$ is dense, $U \cap (X \setminus S) \cap V = \emptyset$ implies $U \cap V = \emptyset$.

Then $L := X \setminus (U \cup V) \subset S$ is a required closed separator of X in S.

Key Lemma

A subset $S \subset X$ is called a *separator* of X if $X \setminus S$ is disconnected.

Lemma

Any separator S of a T_3 -space X contains a closed separator of X.

Proof: If *S* has a non-empty interior, then we can choose a non-empty open set $U \subset X$ such that $\overline{U} \subset S$, and conclude that the boundary $\overline{U} \setminus U \subset S$ is a closed separator of *X*. If *S* has empty interior, then $X \setminus S$ is dense in *X*. Since $X \setminus S$ is disjoint, there are open sets $U, V \subset X$ such that $X \setminus S \subset U \cup V$ and the $U \cap (X \setminus S)$ and $V \cap (X \setminus S)$ are disjoint and non-empty. Since $X \setminus S$ is dense, $U \cap (X \setminus S) \cap V = \emptyset$ implies $U \cap V = \emptyset$.

Then $L := X \setminus (U \cup V) \subset S$ is a required closed separator of X in S.

Key Lemma

A subset $S \subset X$ is called a *separator* of X if $X \setminus S$ is disconnected.

Lemma

Any separator S of a T_3 -space X contains a closed separator of X.

Proof: If *S* has a non-empty interior, then we can choose a non-empty open set $U \subset X$ such that $\overline{U} \subset S$, and conclude that the boundary $\overline{U} \setminus U \subset S$ is a closed separator of *X*. If *S* has empty interior, then $X \setminus S$ is dense in *X*. Since $X \setminus S$ is disjoint, there are open sets $U, V \subset X$ such that $X \setminus S \subset U \cup V$ and the $U \cap (X \setminus S)$ and $V \cap (X \setminus S)$ are disjoint and non-empty. Since $X \setminus S$ is dense, $U \cap (X \setminus S) \cap V = \emptyset$ implies $U \cap V = \emptyset$. Then $L := X \setminus (U \cup V) \subset S$ is a required closed separator of *X* in *S*.

Key Lemma

If $f : X \to Y$ is a Darboux surjection, then for any separator $S \subset Y$ the preimage $f^{-1}(S)$ separates of X.

If X is regular, then $f^{-1}(S)$ contains a closed separator of X.

A subset $S \subset X$ is called a *separator* of X if $X \setminus S$ is disconnected.

Lemma

Any separator S of a T_3 -space X contains a closed separator of X.

Proof: If *S* has a non-empty interior, then we can choose a non-empty open set $U \subset X$ such that $\overline{U} \subset S$, and conclude that the boundary $\overline{U} \setminus U \subset S$ is a closed separator of *X*. If *S* has empty interior, then $X \setminus S$ is dense in *X*. Since $X \setminus S$ is disjoint, there are open sets $U, V \subset X$ such that $X \setminus S \subset U \cup V$ and the $U \cap (X \setminus S)$ and $V \cap (X \setminus S)$ are disjoint and non-empty. Since $X \setminus S$ is dense, $U \cap (X \setminus S) \cap V = \emptyset$ implies $U \cap V = \emptyset$. Then $L := X \setminus (U \cup V) \subset S$ is a required closed separator of *X* in *S*.

Key Lemma

Varieties

In fact, Main Theorem holds not only for Darboux injections into *n*-manifolds but for generalizations of *n*-manifolds called *n*-varieties.

The definition of an *n*-variety is inductive.

Definition

- A metrizable space Y is
- a *1-variety* if each point y ∈ Y has a neighborhood homeomorphic to ℝ;
- (*n*) an (n+1)-variety for some $n \in \mathbb{N}$ if
 - $\bullet\,$ each connected component of Y is semilocally-connected and
 - for each convergent sequence $\{y_n\}_{n\in\omega} \subset Y$ and connected subset $C \subset Y$ containing more than one point, there exists a connected compact *n*-variety $S \subset Y$ such that $C \setminus S$ is disconnected and S contains infinitely many points y_n .

By induction we can show that each *n*-manifold of dimension $n \ge 2$ is an *n*-variety. The Sierpinski carpet is a 2-variety but not a 2-manifold , \ge
In fact, Main Theorem holds not only for Darboux injections into n-manifolds but for generalizations of n-manifolds called n-varieties. The definition of an n-variety is inductive.

Definition

- A metrizable space Y is
- a *1-variety* if each point y ∈ Y has a neighborhood homeomorphic to ℝ;
- (*n*) an (n+1)-variety for some $n \in \mathbb{N}$ if
 - $\bullet\,$ each connected component of Y is semilocally-connected and
 - for each convergent sequence {y_n}_{n∈ω} ⊂ Y and connected subset C ⊂ Y containing more than one point, there exists a connected compact *n*-variety S ⊂ Y such that C \ S is disconnected and S contains infinitely many points y_n.

By induction we can show that each *n*-manifold of dimension $n \ge 2$ is an *n*-variety. The Sierpinski carpet is a 2-variety but not a 2-manifold , \ge

In fact, Main Theorem holds not only for Darboux injections into n-manifolds but for generalizations of n-manifolds called n-varieties. The definition of an n-variety is inductive.

Definition

A metrizable space Y is

- (1) a *1-variety* if each point $y \in Y$ has a neighborhood homeomorphic to \mathbb{R} ;
- (*n*) an (n + 1)-variety for some $n \in \mathbb{N}$ if
 - $\bullet\,$ each connected component of Y is semilocally-connected and
 - for each convergent sequence {y_n}_{n∈ω} ⊂ Y and connected subset C ⊂ Y containing more than one point, there exists a connected compact *n*-variety S ⊂ Y such that C \ S is disconnected and S contains infinitely many points y_n.

By induction we can show that each *n*-manifold of dimension $n \ge 2$ is an *n*-variety. The Sierpinski carpet is a 2-variety but not a 2-manifold \ge , \ge

In fact, Main Theorem holds not only for Darboux injections into n-manifolds but for generalizations of n-manifolds called n-varieties. The definition of an n-variety is inductive.

Definition

- A metrizable space Y is
- (1) a *1-variety* if each point $y \in Y$ has a neighborhood homeomorphic to \mathbb{R} ;
- (*n*) an (n + 1)-variety for some $n \in \mathbb{N}$ if
 - each connected component of Y is semilocally-connected and
 - for each convergent sequence {y_n}_{n∈ω} ⊂ Y and connected subset C ⊂ Y containing more than one point, there exists a connected compact *n*-variety S ⊂ Y such that C \ S is disconnected and S contains infinitely many points y_n.

By induction we can show that each *n*-manifold of dimension $n \ge 2$ is an *n*-variety. The Sierpinski carpet is a 2-variety but not a 2-manifold, $\mathbf{z}_{\text{manifold}}$

In fact, Main Theorem holds not only for Darboux injections into n-manifolds but for generalizations of n-manifolds called n-varieties. The definition of an n-variety is inductive.

Definition

- A metrizable space Y is
- (1) a *1-variety* if each point $y \in Y$ has a neighborhood homeomorphic to \mathbb{R} ;
- (*n*) an (n + 1)-variety for some $n \in \mathbb{N}$ if
 - $\bullet\,$ each connected component of Y is semilocally-connected and
 - for each convergent sequence {y_n}_{n∈ω} ⊂ Y and connected subset C ⊂ Y containing more than one point, there exists a connected compact *n*-variety S ⊂ Y such that C \ S is disconnected and S contains infinitely many points y_n.

By induction we can show that each *n*-manifold of dimension $n \ge 2$ is an *n*-variety.

The Sierpinski carpet is a 2-variety but not a 2amanifold 🚌 💈 🔊 🕫 🧕 🤊

In fact, Main Theorem holds not only for Darboux injections into n-manifolds but for generalizations of n-manifolds called n-varieties. The definition of an n-variety is inductive.

Definition

- A metrizable space Y is
- (1) a *1-variety* if each point $y \in Y$ has a neighborhood homeomorphic to \mathbb{R} ;
- (*n*) an (n + 1)-variety for some $n \in \mathbb{N}$ if
 - each connected component of Y is semilocally-connected and
 - for each convergent sequence {y_n}_{n∈ω} ⊂ Y and connected subset C ⊂ Y containing more than one point, there exists a connected compact *n*-variety S ⊂ Y such that C \ S is disconnected and S contains infinitely many points y_n.

By induction we can show that each *n*-manifold of dimension $n \ge 2$ is an *n*-variety. The Sierpinski carpet is a 2-variety but not a 2-manifold \ge \ge

General Main Theorem

A Darboux injection $f : X \to Y$ between metrizable spaces is continuous if one of the following conditions is satisfied:

- Y is a 1-variety and X is compact and connected;
- 2 Y is a 2-variety and X is a closed 2-manifold;
- Y is a 3-variety and X is a simply-connected closed 3-manifold.

Any Darboux injection $f : X \to S^1$ from a compact connected space X to the circle S^1 is a topological embedding.

Proof.

We prove that:

1. Any Darboux injection $(0,1) \to \mathbb{R}$ is a topological embedding. 2. Any Darboux injection $[0,1] \to \mathbb{R}$ is a topological embedding. 3. Any Darboux injection $X \to \mathbb{R}$ from a path-connected space X is a topological embedding.

4. A connected compact metrizable space X admitting a Darboux injection $X \rightarrow S^1$ to a circle is locally connected.

5. Any Darboux injection $f : X \to S^1$ from a compact connected space X into the circle S^1 is a topological embedding.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Any Darboux injection $f : X \to S^1$ from a compact connected space X to the circle S^1 is a topological embedding.

Proof.

We prove that:

Any Darboux injection (0,1) → R is a topological embedding.
 Any Darboux injection [0,1] → R is a topological embedding.
 Any Darboux injection X → R from a path-connected space X is a topological embedding.
 A connected compact metrizable space X admitting a Darboux injection X → S¹ to a circle is locally connected.
 Any Darboux injection f : X → S¹ from a compact connected

space X into the circle S^1 is a topological embedding.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ ・

Any Darboux injection $f : X \to S^1$ from a compact connected space X to the circle S^1 is a topological embedding.

Proof.

We prove that:

1. Any Darboux injection $(0,1) \to \mathbb{R}$ is a topological embedding.

2. Any Darboux injection $[0,1] \to \mathbb{R}$ is a topological embedding. 3. Any Darboux injection $X \to \mathbb{R}$ from a path-connected space X is a topological embedding.

4. A connected compact metrizable space X admitting a Darboux injection $X \rightarrow S^1$ to a circle is locally connected.

5. Any Darboux injection $f : X \to S^1$ from a compact connected space X into the circle S^1 is a topological embedding.

イロト イヨト イヨト イヨト 三日

Any Darboux injection $f : X \to S^1$ from a compact connected space X to the circle S^1 is a topological embedding.

Proof.

We prove that:

1. Any Darboux injection $(0,1) \to \mathbb{R}$ is a topological embedding.

2. Any Darboux injection $[0,1] \to \mathbb{R}$ is a topological embedding.

3. Any Darboux injection $X \to \mathbb{R}$ from a path-connected space X is a topological embedding.

4. A connected compact metrizable space X admitting a Darboux injection $X \rightarrow S^1$ to a circle is locally connected.

5. Any Darboux injection $f : X \to S^1$ from a compact connected space X into the circle S^1 is a topological embedding.

イロト イヨト イヨト イヨト 三日

Any Darboux injection $f : X \to S^1$ from a compact connected space X to the circle S^1 is a topological embedding.

Proof.

We prove that:

1. Any Darboux injection $(0,1) \to \mathbb{R}$ is a topological embedding.

2. Any Darboux injection $[0,1] \to \mathbb{R}$ is a topological embedding.

3. Any Darboux injection $X \to \mathbb{R}$ from a path-connected space X is a topological embedding.

4. A connected compact metrizable space X admitting a Darboux injection $X \rightarrow S^1$ to a circle is locally connected.

5. Any Darboux injection $f : X \to S^1$ from a compact connected space X into the circle S^1 is a topological embedding.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Any Darboux injection $f : X \to S^1$ from a compact connected space X to the circle S^1 is a topological embedding.

Proof.

We prove that:

1. Any Darboux injection $(0,1) \to \mathbb{R}$ is a topological embedding.

2. Any Darboux injection $[0,1] \to \mathbb{R}$ is a topological embedding.

3. Any Darboux injection $X \to \mathbb{R}$ from a path-connected space X is a topological embedding.

4. A connected compact metrizable space X admitting a Darboux injection $X \rightarrow S^1$ to a circle is locally connected.

5. Any Darboux injection $f : X \to S^1$ from a compact connected space X into the circle S^1 is a topological embedding.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Any Darboux injection $f : X \to S^1$ from a compact connected space X to the circle S^1 is a topological embedding.

Proof.

We prove that:

1. Any Darboux injection $(0,1)
ightarrow \mathbb{R}$ is a topological embedding.

2. Any Darboux injection $[0,1] \to \mathbb{R}$ is a topological embedding.

3. Any Darboux injection $X \to \mathbb{R}$ from a path-connected space X is a topological embedding.

4. A connected compact metrizable space X admitting a Darboux injection $X \rightarrow S^1$ to a circle is locally connected.

5. Any Darboux injection $f : X \to S^1$ from a compact connected space X into the circle S^1 is a topological embedding.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ ・

A compact metrizable space X is called a *multiarc* if each connected component of X is homeomorphic to a segment $[a, b] \subset \mathbb{R}$ with $a \leq b$.

Using Poincaré Duality between Čech cohomologies of a closed subset A in a closed manifold and singular homologies of the complement $M \setminus A$ it is possible to prove two lemmas:

_emma

For any multiarc A in a connected closed n-manifold of dimension $n \ge 2$ the complement $M \setminus A$ is connected.

emma

Let A be a multiarc in a closed n-manifold M of dimension $n \ge 3$. If for some coefficient group G and some positive k < n the homology group $H_k(M; G)$ is trivial, then $H_k(M \setminus A; G) = 0$, too.

イロト イロト イヨト イヨト

ъ

A compact metrizable space X is called a *multiarc* if each connected component of X is homeomorphic to a segment $[a, b] \subset \mathbb{R}$ with $a \leq b$. Using Poincaré Duality between Čech cohomologies of a closed subset A in a closed manifold and singular homologies of the complement $M \setminus A$ it is possible to prove two lemmas:

_emma

For any multiarc A in a connected closed n-manifold of dimension $n \ge 2$ the complement $M \setminus A$ is connected.

emma

Let A be a multiarc in a closed n-manifold M of dimension $n \ge 3$. If for some coefficient group G and some positive k < n the homology group $H_k(M; G)$ is trivial, then $H_k(M \setminus A; G) = 0$, too.

A compact metrizable space X is called a *multiarc* if each connected component of X is homeomorphic to a segment $[a, b] \subset \mathbb{R}$ with $a \leq b$. Using Poincaré Duality between Čech cohomologies of a closed subset A in a closed manifold and singular homologies of the complement $M \setminus A$ it is possible to prove two lemmas:

Lemma

For any multiarc A in a connected closed n-manifold of dimension $n \ge 2$ the complement $M \setminus A$ is connected.

emma

Let A be a multiarc in a closed n-manifold M of dimension $n \ge 3$. If for some coefficient group G and some positive k < n the homology group $H_k(M; G)$ is trivial, then $H_k(M \setminus A; G) = 0$, too.

A compact metrizable space X is called a *multiarc* if each connected component of X is homeomorphic to a segment $[a, b] \subset \mathbb{R}$ with $a \leq b$. Using Poincaré Duality between Čech cohomologies of a closed subset A in a closed manifold and singular homologies of the complement $M \setminus A$ it is possible to prove two lemmas:

Lemma

For any multiarc A in a connected closed n-manifold of dimension $n \ge 2$ the complement $M \setminus A$ is connected.

Lemma

Let A be a multiarc in a closed n-manifold M of dimension $n \ge 3$. If for some coefficient group G and some positive k < n the homology group $H_k(M; G)$ is trivial, then $H_k(M \setminus A; G) = 0$, too.

・ロト ・四ト ・ヨト ・ヨト

Any Darboux injection $f : X \rightarrow Y$ of a connected closed 2-manifold X to a connected 2-variety is a homeomorphism.

Theorem 2g

Let X be a compact space that contains more than one point and cannot be separated by a multiarc. Any Darboux injection $f: X \to Y$ to a connected 2-variety Y is a homeomorphism.

Lemma 2

Let X, Y and f be from Theorem 2g. For any sequence $\{y_n\}_{n\in\omega} \subset Y$ that converges to a point $y \in Y$ there exists a topological circle $S \subset Y$ such that S contains infinitely many points y_n and $f \upharpoonright f^{-1}(S) : f^{-1}(S) \to S$ is a homeomorphism.

Any Darboux injection $f : X \rightarrow Y$ of a connected closed 2-manifold X to a connected 2-variety is a homeomorphism.

Theorem 2g

Let X be a compact space that contains more than one point and cannot be separated by a multiarc. Any Darboux injection $f: X \to Y$ to a connected 2-variety Y is a homeomorphism.

Lemma 2

Let X, Y and f be from Theorem 2g. For any sequence $\{y_n\}_{n\in\omega} \subset Y$ that converges to a point $y \in Y$ there exists a topological circle $S \subset Y$ such that S contains infinitely many points y_n and $f \upharpoonright f^{-1}(S) : f^{-1}(S) \to S$ is a homeomorphism.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Any Darboux injection $f : X \rightarrow Y$ of a connected closed 2-manifold X to a connected 2-variety is a homeomorphism.

Theorem 2g

Let X be a compact space that contains more than one point and cannot be separated by a multiarc. Any Darboux injection $f: X \to Y$ to a connected 2-variety Y is a homeomorphism.

Lemma 2

Let X, Y and f be from Theorem 2g. For any sequence $\{y_n\}_{n\in\omega} \subset Y$ that converges to a point $y \in Y$ there exists a topological circle $S \subset Y$ such that S contains infinitely many points y_n and $f \upharpoonright f^{-1}(S) : f^{-1}(S) \to S$ is a homeomorphism.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Since f is Darboux, $f^{-1}(S)$ is a separator of X and by Lemma, it contains a closed separator $L \subset X$.

By Theorem 1, for any connected complement C of L the restriction $f \upharpoonright C : C \to S$ is a topological embedding. If $f(C) \neq S$, then f(C) is either a singleton or an arc.

Since X cannot be separated by a multiarc, for some connected component C of L we have f(C) = S. Then $f^{-1}(S) = C$ and $f \upharpoonright f^{-1}(S) : f^{-1}(S) \to S$ is a homeomorphism.

Since f is Darboux, $f^{-1}(S)$ is a separator of X and by Lemma, it contains a closed separator $L \subset X$.

By Theorem 1, for any connected complement *C* of *L* the restriction $f \upharpoonright C : C \to S$ is a topological embedding. If $f(C) \neq S$, then f(C) is either a singleton or an arc. Since *X* cannot be separated by a multiarc, for some connected component *C* of *L* we have f(C) = S. Then $f^{-1}(S) = C$ and $f \upharpoonright f^{-1}(S) : f^{-1}(S) \to S$ is a homeomorphism.

Since f is Darboux, $f^{-1}(S)$ is a separator of X and by Lemma, it contains a closed separator $L \subset X$.

By Theorem 1, for any connected complement C of L the restriction $f \upharpoonright C : C \to S$ is a topological embedding. If $f(C) \neq S$, then f(C) is either a singleton or an arc.

Since X cannot be separated by a multiarc, for some connected component C of L we have f(C) = S. Then $f^{-1}(S) = C$ and $f \upharpoonright f^{-1}(S) : f^{-1}(S) \to S$ is a homeomorphism.

Since f is Darboux, $f^{-1}(S)$ is a separator of X and by Lemma, it contains a closed separator $L \subset X$.

By Theorem 1, for any connected complement C of L the restriction $f \upharpoonright C : C \to S$ is a topological embedding. If $f(C) \neq S$, then f(C) is either a singleton or an arc.

Since X cannot be separated by a multiarc, for some connected component C of L we have f(C) = S. Then $f^{-1}(S) = C$ and $f \upharpoonright f^{-1}(S) : f^{-1}(S) \to S$ is a homeomorphism.

Main theorem in dimension 3

Theorem 3

Any Darboux injection $f : X \to Y$ from a simply-connected closed 3-manifold X to a connected 3-variety is a homeomorphism.

Theorem 3g

Let X be a Peano continuum such that the complement $X \setminus A$ of any multiarc $A \subset X$ has trivial homology group $H_1(X \setminus A; G)$ for some coefficient group G. Then any Darboux injection $f : X \to Y$ to a connected 3-variety Y is a homeomorphism.

_emma 3

Let X, Y f be as in Theorem 3g. For any sequence $\{y_n\}_{n\in\omega} \subset Y$ that converges to a point $y \in Y$ there exists a connected compact 2-variety $S \subset Y$ such that S contains infinitely many points y_n and $f \upharpoonright f^{-1}(S) : f^{-1}(S) \to S$ is a homeomorphism.

Any Darboux injection $f : X \to Y$ from a simply-connected closed 3-manifold X to a connected 3-variety is a homeomorphism.

Theorem 3g

Let X be a Peano continuum such that the complement $X \setminus A$ of any multiarc $A \subset X$ has trivial homology group $H_1(X \setminus A; G)$ for some coefficient group G. Then any Darboux injection $f : X \to Y$ to a connected 3-variety Y is a homeomorphism.

.emma 3

Let X, Y f be as in Theorem 3g. For any sequence $\{y_n\}_{n\in\omega} \subset Y$ that converges to a point $y \in Y$ there exists a connected compact 2-variety $S \subset Y$ such that S contains infinitely many points y_n and $f \upharpoonright f^{-1}(S) : f^{-1}(S) \to S$ is a homeomorphism.

Any Darboux injection $f : X \to Y$ from a simply-connected closed 3-manifold X to a connected 3-variety is a homeomorphism.

Theorem 3g

Let X be a Peano continuum such that the complement $X \setminus A$ of any multiarc $A \subset X$ has trivial homology group $H_1(X \setminus A; G)$ for some coefficient group G. Then any Darboux injection $f : X \to Y$ to a connected 3-variety Y is a homeomorphism.

Lemma 3

Let X, Y f be as in Theorem 3g. For any sequence $\{y_n\}_{n\in\omega} \subset Y$ that converges to a point $y \in Y$ there exists a connected compact 2-variety $S \subset Y$ such that S contains infinitely many points y_n and $f \upharpoonright f^{-1}(S) : f^{-1}(S) \to S$ is a homeomorphism.

Using the Mayer-Vietoris exact sequence, we can prove that C is connected and moreovers, cannot be separated by a multiarc. So, we can apply Theorem 2 and conclude that the restriction $f \upharpoonright C : C \to S$ is a homeomorphism. By injectivity of f, $C = f^{-1}(S)$ and hence $f \upharpoonright f^{-1}(S) : f^{-1}(S) \to S$ is a homeomorphism.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Using the Mayer-Vietoris exact sequence, we can prove that C is connected and moreovers, cannot be separated by a multiarc. So, we can apply Theorem 2 and conclude that the restriction $f \upharpoonright C : C \to S$ is a homeomorphism. By injectivity of f, $C = f^{-1}(S)$ and hence $f \upharpoonright f^{-1}(S) : f^{-1}(S) \to S$ is a homeomorphism.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Using the Mayer-Vietoris exact sequence, we can prove that C is connected and moreovers, cannot be separated by a multiarc. So, we can apply Theorem 2 and conclude that the restriction $f \upharpoonright C : C \to S$ is a homeomorphism. By injectivity of f, $C = f^{-1}(S)$ and hence $f \upharpoonright f^{-1}(S) : f^{-1}(S) \to S$ is a homeomorphism.

イロト (日本) (日本) (日本) (日本) (日本)

Using the Mayer-Vietoris exact sequence, we can prove that C is connected and moreovers, cannot be separated by a multiarc. So, we can apply Theorem 2 and conclude that the restriction $f \upharpoonright C : C \to S$ is a homeomorphism. By injectivity of $f, C = f^{-1}(S)$ and hence $f \upharpoonright f^{-1}(S) : f^{-1}(S) \to S$ is a homeomorphism.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで 16/19

Using the Mayer-Vietoris exact sequence, we can prove that C is connected and moreovers, cannot be separated by a multiarc. So, we can apply Theorem 2 and conclude that the restriction $f \upharpoonright C : C \to S$ is a homeomorphism. By injectivity of f, $C = f^{-1}(S)$ and hence $f \upharpoonright f^{-1}(S) : f^{-1}(S) \to S$ is a homeomorphism.

◆□▶ ◆舂▶ ◆≧▶ ◆≧▶ ≧ のへで 16/19

Is any Darboux bijection of \mathbb{R}^n continuous?

Problem 2

Is any Darboux bijection of the plane continuous?

Problem 3

Is any Darboux bijection of the 3-dimensional torus continuous?

Problem 4

Is any Darboux bijection of the 4-dimensional sphere continuous?

<ロ> <四> <四> <四> <四> <四> <四</p>

Is any Darboux bijection of \mathbb{R}^n continuous?

Problem 2

Is any Darboux bijection of the plane continuous?

Problem 3

Is any Darboux bijection of the 3-dimensional torus continuous?

Problem 4

Is any Darboux bijection of the 4-dimensional sphere continuous?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ ・

Is any Darboux bijection of \mathbb{R}^n continuous?

Problem 2

Is any Darboux bijection of the plane continuous?

Problem 3

Is any Darboux bijection of the 3-dimensional torus continuous?

Problem 4

Is any Darboux bijection of the 4-dimensional sphere continuous?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 - の�� 17/19

Is any Darboux bijection of \mathbb{R}^n continuous?

Problem 2

Is any Darboux bijection of the plane continuous?

Problem 3

Is any Darboux bijection of the 3-dimensional torus continuous?

Problem 4

Is any Darboux bijection of the 4-dimensional sphere continuous?

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで 17/19
- W. Wong, Does there exist a bijection of \mathbb{R}^n to itself such that the forward map is connected but the inverse is not?, https://mathoverflow.net/questions/235893.
- I.Banakh, T.Banakh, The continuity of Darboux injections between manifolds, preprint (https://arxiv.org/abs/1809.00401).

イロト 不得 トイヨト イヨト ニヨー

- W. Wong, Does there exist a bijection of ℝⁿ to itself such that the forward map is connected but the inverse is not?, https://mathoverflow.net/questions/235893.
- I.Banakh, T.Banakh, The continuity of Darboux injections between manifolds, preprint (https://arxiv.org/abs/1809.00401).

イロト 不得 トイヨト イヨト ニヨー

Thank You!

Dziękuję!

Grazie!

T.Banakh The continuity of Darboux functions between manifolds

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ◆

Thank You! Dziękuję!

Grazie!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Thank You! Dziękuję!

Grazie!

T.Banakh The continuity of Darboux functions between manifolds

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで