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Definition

A function f : X — Y between topological spaces is called
Darboux if for every connected set C C X the image f(C) is
connected.

T.Banakh The continuity of Darboux functions between manifolds



Definition

A function f : X — Y between topological spaces is called
Darboux if for every connected set C C X the image f(C) is
connected.

It is clear that each continuous function is Darboux.
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Definition

A function f : X — Y between topological spaces is called
Darboux if for every connected set C C X the image f(C) is
connected.

It is clear that each continuous function is Darboux.
The function
sin(1) if x #0;

f —
x)=14 if x = 0.

is Darboux but not continuous.
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Definition

A function f : X — Y between topological spaces is called
Darboux if for every connected set C C X the image f(C) is
connected.

Theorem (Darboux, 1875)

For any differentiable function f : R — R the derivative is Darboux
(but not necessarily continuous).
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Tanaka-Pervin-Levine Theorem

A topological space X is caleld semilocally-connected if X has a
base of the topology consisting of open sets U C X whose
complements have finitely many connected components.
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Tanaka-Pervin-Levine Theorem

A topological space X is caleld semilocally-connected if X has a
base of the topology consisting of open sets U C X whose
complements have finitely many connected components.

The Euclidean spaces R” are semilocally-connected.
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Tanaka-Pervin-Levine Theorem

A topological space X is caleld semilocally-connected if X has a
base of the topology consisting of open sets U C X whose
complements have finitely many connected components.

Theorem (Tanaka, 1955; Pervin, Levine, 1958)

A bijective map f : X — Y between semilocally-connected
T1-spaces is a homeomorphism iff both f and f~1 are Darboux.

T.Banakh The continuity of Darboux functions between manifolds



Tanaka-Pervin-Levine Theorem

A topological space X is caleld semilocally-connected if X has a
base of the topology consisting of open sets U C X whose
complements have finitely many connected components.

Theorem (Tanaka, 1955; Pervin, Levine, 1958)

A bijective map f : X — Y between semilocally-connected
T1-spaces is a homeomorphism iff both f and f~1 are Darboux.

This theorem follows from a more general

A map f : X — Y to a semilocally-connected Ty-space Y is
continuous if f is Darboux and for any connected set C C Y the
preimage f~1(C) has finitely many connected components.
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The proof of Lemma

A map f : X — Y to a semilocally-connected Ty-space Y is
continuous if f is Darboux and for any connected set C C Y the
preimage f~1(C) has finitely many connected components.
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The proof of Lemma

A map f : X — Y to a semilocally-connected Ty-space Y is
continuous if f is Darboux and for any connected set C C Y the
preimage f~1(C) has finitely many connected components.

Proof: Asuming that f is discontinuous at some point x € X, we can
find a neighborhood O, of y := f(x) whose preimage f~1(0,) is not a
neighborhood of x.
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The proof of Lemma

A map f : X — Y to a semilocally-connected Ty-space Y is
continuous if f is Darboux and for any connected set C C Y the
preimage f~1(C) has finitely many connected components.

Proof: Asuming that f is discontinuous at some point x € X, we can
find a neighborhood O, of y := f(x) whose preimage f~1(0,) is not a
neighborhood of x. Since Y is semilocally-connected, we can replace O,
by a smaller neighborhood and assume that Y \ O, has only finitely
many connected components Cy, ..., C,.
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The proof of Lemma

A map f : X — Y to a semilocally-connected Ty-space Y is
continuous if f is Darboux and for any connected set C C Y the
preimage f~1(C) has finitely many connected components.

Proof: Asuming that f is discontinuous at some point x € X, we can
find a neighborhood O, of y := f(x) whose preimage f~1(0,) is not a
neighborhood of x. Since Y is semilocally-connected, we can replace O,
by a smaller neighborhood and assume that Y \ O, has only finitely

many connected components Ci, ..., C,. By our assumption, for every
i < n the set f~1(C;) has finitely many connected components
G, .., Gip.
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The proof of Lemma

A map f : X — Y to a semilocally-connected Ty-space Y is
continuous if f is Darboux and for any connected set C C Y the
preimage f~1(C) has finitely many connected components.

Proof: Asuming that f is discontinuous at some point x € X, we can
find a neighborhood O, of y := f(x) whose preimage f~1(0,) is not a
neighborhood of x. Since Y is semilocally-connected, we can replace O,
by a smaller neighborhood and assume that Y \ O, has only finitely

many connected components Ci, ..., C,. By our assumption, for every
i < nthe set f~1(G) has finitely many connected components
Cii,...,GCin. Since

x € X\ f1(0,)=f1(Y\0,)=UL UL Gi

there exist /,j such that x € C,,J.
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The proof of Lemma

A map f : X — Y to a semilocally-connected Ty-space Y is
continuous if f is Darboux and for any connected set C C Y the
preimage f~1(C) has finitely many connected components.

Proof: Asuming that f is discontinuous at some point x € X, we can
find a neighborhood O, of y := f(x) whose preimage f~1(0,) is not a
neighborhood of x. Since Y is semilocally-connected, we can replace O,
by a smaller neighborhood and assume that Y \ O, has only finitely

many connected components Ci, ..., C,. By our assumption, for every
i < nthe set f~1(G) has finitely many connected components
Cii,...,GCin. Since

x € X\ f1(0,)=f1(Y\0,)=UL UL Gi

there exist i, j such that x € C,,J. Then the subset C := {X} uUG,is
connected and so is its image f(C) = {f(x)} U (G ).
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The proof of Lemma

A map f : X — Y to a semilocally-connected Ty-space Y is
continuous if f is Darboux and for any connected set C C Y the
preimage f~1(C) has finitely many connected components.

Proof: Asuming that f is discontinuous at some point x € X, we can
find a neighborhood O, of y := f(x) whose preimage f~1(0,) is not a
neighborhood of x. Since Y is semilocally-connected, we can replace O,
by a smaller neighborhood and assume that Y \ O, has only finitely

many connected components Ci, ..., C,. By our assumption, for every
i < nthe set f~1(G) has finitely many connected components
Cii,...,GCin. Since

x € X\ f1(0,)=f1(Y\0,)=UL UL Gi

there exist i, j such that x € C,,J. Then the subset C = {X} uUG,is
connected and so is its image f(C) = {f(x)} U f(C; ). On the other
hand, the singleton {x} = f(C) N O, is clopen in f(C) so f(C) is not
connected.
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Wong's Problem

Theorem (Tanaka, 1955; Pervin, Levine, 1958)

A bijective map f : X — Y between semilocally-connected
T1-spaces is a homeomorphism iff both f and f~1 are Darboux.
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Wong's Problem

Theorem (Tanaka, 1955; Pervin, Levine, 1958)

A bijective map f : X — Y between semilocally-connected
T1-spaces is a homeomorphism iff both f and f~1 are Darboux.

On the other hand, the Invariance of Domain Principle implies

Each continuous bijection of R" is a homeomorphism.
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Wong's Problem

Theorem (Tanaka, 1955; Pervin, Levine, 1958)

A bijective map f : X — Y between semilocally-connected
T1-spaces is a homeomorphism iff both f and f~1 are Darboux.

On the other hand, the Invariance of Domain Principle implies

Each continuous bijection of R" is a homeomorphism.

Problem (Wong, 2016)

Is each Darboux bijection of R” a homeomorphism?
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Wong's Problem

Theorem (Tanaka, 1955; Pervin, Levine, 1958)

A bijective map f : X — Y between semilocally-connected
T1-spaces is a homeomorphism iff both f and f~1 are Darboux.

On the other hand, the Invariance of Domain Principle implies

Each continuous bijection of R" is a homeomorphism.

Problem (Wong, 2016)

Is each Darboux bijection of R” a homeomorphism?

For n =1 the answer is “yes”!
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Wong's Problem

Theorem (Tanaka, 1955; Pervin, Levine, 1958)

A bijective map f : X — Y between semilocally-connected
T1-spaces is a homeomorphism iff both f and f~1 are Darboux.

On the other hand, the Invariance of Domain Principle implies

Each continuous bijection of R" is a homeomorphism.

Problem (Wong, 2016)

Is each Darboux bijection of R” a homeomorphism?

For n =1 the answer is "yes"! For n > 2 the problem is still open!
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A Generalized Problem and a Partial Answer

To put Wong's Problem into a wider context,
let us ask a more

General Problem

Recognize pairs of topological spaces X, Y such that each Darboux
injection (or bijection) f : X — Y is continuous (homeomorphism).
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A Generalized Problem and a Partial Answer

To put Wong's Problem into a wider context,
let us ask a more

General Problem

Recognize pairs of topological spaces X, Y such that each Darboux
injection (or bijection) f : X — Y is continuous (homeomorphism).

Partial Answer = Our Main Theorem

A Darboux injection f : X — Y between metrizable spaces is
continuous if one of the following conditions is satisfied:

© Y is a 1I-manifold and X is compact and connected;
@ Y is a 2-manifold and X is a closed 2-manifold;

© Y is a 3-manifold and X is a simply-connected closed
3-manifold.
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Main Theorem with necessary definitions

A Darboux injection f : X — Y between metrizable spaces is
continuous if one of the following conditions is satisfied:

@ Y is a 1I-manifold and X is compact and connected;
@ Y is a 2-manifold and X is a closed 2-manifold;

© Y is a 3-manifold and X is a simply-connected closed
3-manifold.
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Main Theorem with necessary definitions

A Darboux injection f : X — Y between metrizable spaces is
continuous if one of the following conditions is satisfied:

@ Y is a 1I-manifold and X is compact and connected;
@ Y is a 2-manifold and X is a closed 2-manifold;

© Y is a 3-manifold and X is a simply-connected closed
3-manifold.

A metrizable space X is called

@ an n-manifold if each point x € X has a neighborhood,
homeomorphic to an open subset of the closed half-space
RY = {(x1,...,xp) € R" : xy > 0};
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Main Theorem with necessary definitions

A Darboux injection f : X — Y between metrizable spaces is
continuous if one of the following conditions is satisfied:

@ Y is a 1I-manifold and X is compact and connected;
@ Y is a 2-manifold and X is a closed 2-manifold;

© Y is a 3-manifold and X is a simply-connected closed
3-manifold.

A metrizable space X is called
@ an n-manifold if each point x € X has a neighborhood,
homeomorphic to an open subset of the closed half-space
RY = {(x1,...,xp) € R" : xy > 0};
@ a closed n-manifold if X is compact and each point of X has
a neighborhood homeomorphic to R”.
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Main Theorem with necessary definitions

A Darboux injection f : X — Y between metrizable spaces is
continuous if one of the following conditions is satisfied:

@ Y is a 1I-manifold and X is compact and connected;
@ Y is a 2-manifold and X is a closed 2-manifold;

© Y is a 3-manifold and X is a simply-connected closed
3-manifold.

A metrizable space X is called
@ an n-manifold if each point x € X has a neighborhood,
homeomorphic to an open subset of the closed half-space
RY = {(x1,...,xp) € R" : xy > 0};
@ a closed n-manifold if X is compact and each point of X has
a neighborhood homeomorphic to R”.
A topological space X is simply-connected if X is path-connected
and has trivial fundamental group 71(X).
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Separators and the Key Lemma

A subset S C X is called a separator of X if X \ S is disconnected.
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Separators and the Key Lemma

A subset S C X is called a separator of X if X \ S is disconnected.

Any separator S of a Ts-space X contains a closed separator of X.
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Separators and the Key Lemma

A subset S C X is called a separator of X if X \ S is disconnected.

Any separator S of a Ts-space X contains a closed separator of X.

Proof: If S has a non-empty interior, then we can choose a non-empty
open set U C X such that U C S, and conclude that the boundary
U\ U C S is a closed separator of X.
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Separators and the Key Lemma

A subset S C X is called a separator of X if X \ S is disconnected.

Any separator S of a Ts-space X contains a closed separator of X.

Proof: If S has a non-empty interior, then we can choose a non-empty
open set U C X such that U c S, and conclude that the boundary
U\ U C S is a closed separator of X.

If S has empty interior, then X \ S is dense in X.
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Separators and the Key Lemma

A subset S C X is called a separator of X if X \ S is disconnected.

Any separator S of a Ts-space X contains a closed separator of X.

Proof: If S has a non-empty interior, then we can choose a non-empty
open set U C X such that U c S, and conclude that the boundary

U\ U C S is a closed separator of X.

If S has empty interior, then X \ S is dense in X. Since X \ S is disjoint,
there are open sets U, V C X such that X\ S C UU V and the
UN(X\S)and VN (X\S) are disjoint and non-empty. Since X \ S is
dense, UN(X\S)NV =0 implies UN V = 0.
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Separators and the Key Lemma

A subset S C X is called a separator of X if X \ S is disconnected.

Any separator S of a Ts-space X contains a closed separator of X.

Proof: If S has a non-empty interior, then we can choose a non-empty
open set U C X such that U c S, and conclude that the boundary

U\ U C S is a closed separator of X.

If S has empty interior, then X \ S is dense in X. Since X \ S is disjoint,
there are open sets U, V C X such that X\ S C UU V and the
UN(X\S)and VN (X\S) are disjoint and non-empty. Since X \ S is
dense, UN(X\S)NV =0 implies UN V = 0.

Then L:= X\ (UU V) C S is a required closed separator of X in S.
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Separators and the Key Lemma

A subset S C X is called a separator of X if X \ S is disconnected.

Any separator S of a Ts-space X contains a closed separator of X.

Proof: If S has a non-empty interior, then we can choose a non-empty
open set U C X such that U c S, and conclude that the boundary

U\ U C S is a closed separator of X.

If S has empty interior, then X \ S is dense in X. Since X \ S is disjoint,
there are open sets U, V C X such that X\ S C UU V and the
UN(X\S)and VN (X\S) are disjoint and non-empty. Since X \ S is
dense, UN(X\S)NV =0 implies UN V = 0.

Then L:= X\ (UU V) C S is a required closed separator of X in S.

Key Lemma

If f: X — Y is a Darboux surjection, then for any separator
S C Y the preimage f~1(S) separates of X.
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Separators and the Key Lemma

A subset S C X is called a separator of X if X \ S is disconnected.

Any separator S of a Ts-space X contains a closed separator of X.

Proof: If S has a non-empty interior, then we can choose a non-empty
open set U C X such that U c S, and conclude that the boundary

U\ U C S is a closed separator of X.

If S has empty interior, then X \ S is dense in X. Since X \ S is disjoint,
there are open sets U, V C X such that X\ S C UU V and the
UN(X\S)and VN (X\S) are disjoint and non-empty. Since X \ S is
dense, UN(X\S)NV =0 implies UN V = 0.

Then L:= X\ (UU V) C S is a required closed separator of X in S.

If f: X — Y is a Darboux surjection, then for any separator
S C Y the preimage f~1(S) separates of X.
If X is regular, then f~1(S) contains a closed separator of X.
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In fact, Main Theorem holds not only for Darboux injections into
n-manifolds but for generalizations of n-manifolds called n-varieties.
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In fact, Main Theorem holds not only for Darboux injections into
n-manifolds but for generalizations of n-manifolds called n-varieties.
The definition of an n-variety is inductive.
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Varieties

In fact, Main Theorem holds not only for Darboux injections into
n-manifolds but for generalizations of n-manifolds called n-varieties.
The definition of an n-variety is inductive.

Definition
A metrizable space Y is

(1) a I-variety if each point y € Y has a neighborhood
homeomorphic to R;
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Varieties

In fact, Main Theorem holds not only for Darboux injections into
n-manifolds but for generalizations of n-manifolds called n-varieties.
The definition of an n-variety is inductive.

Definition

A metrizable space Y is

(1) a I-variety if each point y € Y has a neighborhood
homeomorphic to R;
(n) an (n+ 1)-variety for some n € N if
e each connected component of Y is semilocally-connected and
o for each convergent sequence {y,}nc, C Y and connected
subset C C Y containing more than one point, there exists a
connected compact n-variety S C Y such that C\ S is
disconnected and S contains infinitely many points y,,.
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Varieties

In fact, Main Theorem holds not only for Darboux injections into
n-manifolds but for generalizations of n-manifolds called n-varieties.
The definition of an n-variety is inductive.

Definition
A metrizable space Y is

(1) a I-variety if each point y € Y has a neighborhood
homeomorphic to R;
(n) an (n+ 1)-variety for some n € N if
e each connected component of Y is semilocally-connected and
o for each convergent sequence {y,}nc, C Y and connected
subset C C Y containing more than one point, there exists a
connected compact n-variety S C Y such that C\ S is
disconnected and S contains infinitely many points y,,.

By induction we can show that each n-manifold of dimension
n > 2 is an n-variety.
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Varieties

In fact, Main Theorem holds not only for Darboux injections into
n-manifolds but for generalizations of n-manifolds called n-varieties.
The definition of an n-variety is inductive.

Definition
A metrizable space Y is

(1) a I-variety if each point y € Y has a neighborhood
homeomorphic to R;
(n) an (n+ 1)-variety for some n € N if
e each connected component of Y is semilocally-connected and
o for each convergent sequence {y,}nc, C Y and connected
subset C C Y containing more than one point, there exists a
connected compact n-variety S C Y such that C\ S is
disconnected and S contains infinitely many points y,,.

By induction we can show that each n-manifold of dimension
n > 2 is an n-variety.
The Sierpinski carpet is a 2-variety but not.a 2-manifold.
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General Main Theorem

General Main Theorem

A Darboux injection f : X — Y between metrizable spaces is
continuous if one of the following conditions is satisfied:

©Q Y is a l-variety and X is compact and connected;
@ Y is a 2-variety and X is a closed 2-manifold;

© Y is a 3-variety and X is a simply-connected closed
3-manifold.
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The case of dimension 1

Any Darboux injection f : X — S! from a compact connected
space X to the circle St is a topological embedding.

T.Banakh The continuity of Darboux functions between manifolds



The case of dimension 1

Any Darboux injection f : X — S! from a compact connected
space X to the circle St is a topological embedding.

We prove that:
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The case of dimension 1

Any Darboux injection f : X — S! from a compact connected
space X to the circle St is a topological embedding.

We prove that:
1. Any Darboux injection (0,1) — R is a topological embedding.
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The case of dimension 1

Any Darboux injection f : X — S! from a compact connected
space X to the circle St is a topological embedding.

We prove that:
1. Any Darboux injection (0,1) — R is a topological embedding.
2. Any Darboux injection [0,1] — R is a topological embedding.
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The case of dimension 1

Any Darboux injection f : X — S! from a compact connected
space X to the circle St is a topological embedding.

We prove that:

1. Any Darboux injection (0,1) — R is a topological embedding.
2. Any Darboux injection [0,1] — R is a topological embedding.

3. Any Darboux injection X — R from a path-connected space X
is a topological embedding.
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The case of dimension 1

Any Darboux injection f : X — S! from a compact connected
space X to the circle St is a topological embedding.

We prove that:

1. Any Darboux injection (0,1) — R is a topological embedding.
2. Any Darboux injection [0,1] — R is a topological embedding.
3. Any Darboux injection X — R from a path-connected space X
is a topological embedding.

4. A connected compact metrizable space X admitting a Darboux
injection X — S to a circle is locally connected.
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The case of dimension 1

Any Darboux injection f : X — S! from a compact connected
space X to the circle St is a topological embedding.

We prove that:

1. Any Darboux injection (0,1) — R is a topological embedding.
2. Any Darboux injection [0,1] — R is a topological embedding.
3. Any Darboux injection X — R from a path-connected space X
is a topological embedding.

4. A connected compact metrizable space X admitting a Darboux
injection X — S to a circle is locally connected.

5. Any Darboux injection f : X — S! from a compact connected
space X into the circle St is a topological embedding. []
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A compact metrizable space X is called a multiarc if each
connected component of X is homeomorphic to a segment
[a, b] C R with a < b.
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A compact metrizable space X is called a multiarc if each
connected component of X is homeomorphic to a segment

[a, b] C R with a < b.

Using Poincaré Duality between Cech cohomologies of a closed
subset A in a closed manifold and singular homologies of the
complement M\ A it is possible to prove two lemmas:
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A compact metrizable space X is called a multiarc if each
connected component of X is homeomorphic to a segment

[a, b] C R with a < b.

Using Poincaré Duality between Cech cohomologies of a closed
subset A in a closed manifold and singular homologies of the
complement M\ A it is possible to prove two lemmas:

For any multiarc A in a connected closed n-manifold of dimension
n > 2 the complement M \ A is connected.
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A compact metrizable space X is called a multiarc if each
connected component of X is homeomorphic to a segment

[a, b] C R with a < b.

Using Poincaré Duality between Cech cohomologies of a closed
subset A in a closed manifold and singular homologies of the
complement M\ A it is possible to prove two lemmas:

Lemma

For any multiarc A in a connected closed n-manifold of dimension
n > 2 the complement M \ A is connected.

Lemma

Let A be a multiarc in a closed n-manifold M of dimension n > 3.
If for some coefficient group G and some positive k < n the
homology group Hi(M; G) is trivial, then H (M \ A; G) = 0, too.

T.Banakh The continuity of Darboux functions between manifolds



Main Theorem in dimension 2

Any Darboux injection f : X — Y of a connected closed
2-manifold X to a connected 2-variety is a homeomorphism.
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Main Theorem in dimension 2

Any Darboux injection f : X — Y of a connected closed
2-manifold X to a connected 2-variety is a homeomorphism.

v

Theorem 2g

Let X be a compact space that contains more than one point and
cannot be separated by a multiarc. Any Darboux injection
f: X — Y to a connected 2-variety Y is a homeomorphism.
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Main Theorem in dimension 2

Theorem 2g

Let X be a compact space that contains more than one point and
cannot be separated by a multiarc. Any Darboux injection
f: X — Y to a connected 2-variety Y is a homeomorphism.

Let X, Y and f be from Theorem 2g. For any sequence
{¥n}new C Y that converges to a point y € Y there exists a
topological circle S C Y such that S contains infinitely many
points y, and f[f~1(S): f71(S) — S is a homeomorphism.
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Proof of Lemma 2

Since Y is a 2-variety, there exists a topological circle S C Y such
that £(X) \ S is disconnected and S contains infinitely many
points y,.
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Proof of Lemma 2

Since Y is a 2-variety, there exists a topological circle S C Y such
that £(X) \ S is disconnected and S contains infinitely many
points y,.

Since f is Darboux, f~1(S) is a separator of X and by Lemma, it
contains a closed separator L C X.
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Proof of Lemma 2

Since Y is a 2-variety, there exists a topological circle S C Y such
that £(X) \ S is disconnected and S contains infinitely many
points y,.

Since f is Darboux, f~1(S) is a separator of X and by Lemma, it
contains a closed separator L C X.

By Theorem 1, for any connected complement C of L the
restriction f[C : C — S is a topological embedding. If f(C) # S,
then f(C) is either a singleton or an arc.
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Proof of Lemma 2

Since Y is a 2-variety, there exists a topological circle S C Y such
that £(X) \ S is disconnected and S contains infinitely many
points y,.

Since f is Darboux, f~1(S) is a separator of X and by Lemma, it
contains a closed separator L C X.

By Theorem 1, for any connected complement C of L the
restriction f[C : C — S is a topological embedding. If f(C) # S,
then f(C) is either a singleton or an arc.

Since X cannot be separated by a multiarc, for some connected
component C of L we have f(C) = S. Then f~1(S) = C and
fFIf~1(S): f~1(S) — S is a homeomorphism.
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Main theorem in dimension 3

Any Darboux injection f : X — Y from a simply-connected closed
3-manifold X to a connected 3-variety is a homeomorphism.
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Main theorem in dimension 3

Theorem 3
Any Darboux injection f : X — Y from a simply-connected closed
3-manifold X to a connected 3-variety is a homeomorphism.

Theorem 3g

Let X be a Peano continuum such that the complement X \ A of
any multiarc A C X has trivial homology group Hi(X \ A; G) for
some coefficient group G. Then any Darboux injection f : X — Y
to a connected 3-variety Y is a homeomorphism.
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Main theorem in dimension 3

Theorem 3g

Let X be a Peano continuum such that the complement X \ A of
any multiarc A C X has trivial homology group Hi(X \ A; G) for
some coefficient group G. Then any Darboux injection f : X — Y
to a connected 3-variety Y is a homeomorphism.

Let X, Y f be as in Theorem 3g. For any sequence {yp}nc, C Y
that converges to a point y € Y there exists a connected compact
2-variety S C Y such that S contains infinitely many points y, and
fIF~Y(S): f~1(S) — S is a homeomorphism.
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Proof of Lemma 3

By the definition of a 3-variety, there exists a compact connected
2-variety S C Y such that f(X)\ S is disconnected and S contains
infinitely many points y,.
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Proof of Lemma 3

By the definition of a 3-variety, there exists a compact connected
2-variety S C Y such that f(X)\ S is disconnected and S contains
infinitely many points y,. By Lemma on separators, f~1(S)
contains some closed separator C of X. By the Zorn Lemma, we
can assume that C is a minimal closed separator between some
points a, b of X.
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Proof of Lemma 3

By the definition of a 3-variety, there exists a compact connected
2-variety S C Y such that f(X)\ S is disconnected and S contains
infinitely many points y,. By Lemma on separators, f~1(S)
contains some closed separator C of X. By the Zorn Lemma, we
can assume that C is a minimal closed separator between some
points a, b of X.

Using the Mayer-Vietoris exact sequence, we can prove that C is
connected and moreovers, cannot be separated by a multiarc.
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Proof of Lemma 3

By the definition of a 3-variety, there exists a compact connected
2-variety S C Y such that f(X)\ S is disconnected and S contains
infinitely many points y,. By Lemma on separators, f~1(S)
contains some closed separator C of X. By the Zorn Lemma, we
can assume that C is a minimal closed separator between some
points a, b of X.

Using the Mayer-Vietoris exact sequence, we can prove that C is
connected and moreovers, cannot be separated by a multiarc. So,
we can apply Theorem 2 and conclude that the restriction

fIC:C — S is a homeomorphism.
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Proof of Lemma 3

By the definition of a 3-variety, there exists a compact connected
2-variety S C Y such that f(X)\ S is disconnected and S contains
infinitely many points y,. By Lemma on separators, f~1(S)
contains some closed separator C of X. By the Zorn Lemma, we
can assume that C is a minimal closed separator between some
points a, b of X.

Using the Mayer-Vietoris exact sequence, we can prove that C is
connected and moreovers, cannot be separated by a multiarc. So,
we can apply Theorem 2 and conclude that the restriction

fIC: C — S is a homeomorphism. By injectivity of f, C = f~1(5)
and hence f[f~1(S): f~1(S) — S is a homeomorphism.
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Open Problems

Problem 1 (Wong)

Is any Darboux bijection of R"” continuous?
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Open Problems

Problem 1 (Wong)

Is any Darboux bijection of R"” continuous?

Problem 2
Is any Darboux bijection of the plane continuous?
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Open Problems

Problem 1 (Wong)

Is any Darboux bijection of R"” continuous?

Problem 2
Is any Darboux bijection of the plane continuous?

Problem 3
Is any Darboux bijection of the 3-dimensional torus continuous?
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Open Problems

Problem 1 (Wong)

Is any Darboux bijection of R"” continuous?

Problem 2

Is any Darboux bijection of the plane continuous?

Problem 3

Is any Darboux bijection of the 3-dimensional torus continuous?

Problem 4

Is any Darboux bijection of the 4-dimensional sphere continuous?
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