FACULTY OF ARCHITECTURE

COURSE SYLLABUS

Course title in Polish: AN INTRODUCTION TO MATHEMATICAL MODELLING Course title in English: WSTEP DO MODELOWANIA MATEMATYCZNEGO

Specialization (if applicable): Architecture

Profile (if applicable):

Level and form of studies: 1st level, full-time

Semester:

Course type: **obligatory**Course code: **MAT001755W**Group of courses: **NO**

Lecture **Tutorial** Laboratory **Project** Seminar Number of hours of organized classes in 15 University (ZZU) Number of hours of total student workload (CNPS) Form of crediting Examination Examination Examination Examination Crediting / Crediting / Crediting / Crediting / Crediting with grade with grade* with grade* with grade* with grade* For group of courses mark (X) final course Number of ECTS points 1 including number of ECTS points for practical (P) classes including number of ECTS points for direct teacherstudent contact classes or other people conducting classes (BU)

PREREQUISITES RELATED TO KNOWLEDGE, COMPETENCES AND SOCIAL SKILLS

Knowledge of vector calculus. Knowledge of differential and integral calculus of functions of one and two variables.

COURSE OBJECTIVES

- C1 Presenting the Fibonacci sentence and the principle of mathematical induction.
- C2 Presenting the theory of convex sets.
- C3 Givong basic knowledge related to tilings of surfaces and to filling spaces.
- C4 Passing on basic knowledge related to lattice polygons.
- C5 Giving basic understanding of graph theory.
- C6 Passing on knowledge related to curves and surfaces.

COURSE LEARNING OUTCOMES

Relating to knowledge:

PEK_W1 knows the properties of the Fibonacci sequence.

PEK_W2 has basic knowledge related to convex set,

PEK_W3 knows solids and tilings,

PEK_W4 has basic knowledge related to lattice polygons,

PEK_W5 knows basic classes of graphs,

PEK W6 knows basic curves and surfaces.

Relating to competences:

PEK U1 is able to apply Euler's formula to investigate polyhedral solids,

PEK U2 is able to investigate basic properties of graphs,

PEK_U3 is able to describe areas in diverse coordinates sets,

PEK_U4 is able to investigate properties of curves on the plane.

Relating to social skills:

PEK_K01 can, without assistance, search for necessary information in the literature PEK_K02 understands necessity of systematic and individual work on the material of the course.

	PROGRAMME CONTENT				
	Number of hours				
Lec 1	Golden ratio. The Fibonacci sequence. The principle of mathematical induction.	2			
Lec 2	Convex and starshaped sets. Helly's and Krasnosel'skii's theorems.	2			
Lec 3	Planar tilings. Euler's polyhedral formula. Euler characteristic. Platonic and Archimedean solids.	2			
Lec 4	Lattice polygons and Pick's theorem.	2			
Lec 5	Elements of graph theory. Eulerian and Hamiltonian graphs. Platonic graphs. Planar graphs and Kuratowski's theorem.	2			
Lec 6	Curves on the plane. Conic sections. Parametric curves.	2			
Lec 7	Cylindrical and spherical coordinates. Description of regions and surfaces in cylindrical and spherical coordinates.	2			
Lec 8	Final test.	1			
	Total hours	15			

TEACHING TOOLS

- N1 Lectures traditional and using multimedia tools.
- N2 Discussions.
- N3 Tutorial.

ASSESSMENT OF ACHIEVEMENT OF LEARNING OUTCOMES				
Evaluation (F – forming	Number of learning	Method of assessing the achievement of learning		
(during semester), C –	outcome	outcome		
concluding (at semester				
end)				
F1 – Dis	PEK_U1-PEK_U4	Oral presentations		
	PEK_K01			
F2 – Lec	PEK_W1-PEK_W6	Final test		
	PEK_U1-PEK_U4			

	PEK_K02	
C - rules set by the lecture	r	

BASIC AND ADDITIONAL LITERATURE

BASIC LITERATURE:

- [1] R. Webster, Convexity, Oxford University Press, 1994.
- [2] St. Roman, An Introduction to Discrete Mathematics, Innovative Textbooks, 2004.
- [3] R. J. Wilson, Introduction to Graph Theory, Prentice Hall, 2010.

ADDITIONAL LITERATURE:

- [1] P. Strzelecki, Matematyka współczesna dla myślących laików, Wydawnictwa Uniwersytetu Warszawskiego, Warszawa, 2011.
- [2] R. Tarczewski, Topologia form strukturalnych, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2011
- [3] M. Gewert, Z. Skoczylas, Elementy analizy wektorowej. Teoria, przykłady zadania. Oficyna Wydawnicza GiS, Wrocław, 2012.
- [4] M. Zakrzewski, Markowe Wykłady z Matematyki, Matematyka Dyskretna, Oficyna Wydawnicza GiS, Wrocław, 2014.
- [5] M. Gewert, Z. Skoczylas, Analiza matematyczna 2, Definicje, twierdzenia, wzory. Oficyna Wydawnicza GiS, Wrocław, 2016.

COURSE SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Wydziałowa Komisja Programowa ds. Kursów Ogólnouczelnianych mgr Bogusław Merdas (Bogusław.Merdas@pwr.edu.pl)