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Abstract

We study the exterior and interior Bernoulli problems for the half Laplacian and the

interior Bernoulli problem for the spectral half Laplacian. We concentrate on the existence

and geometric properties of solutions. Our main results are the following. For the exterior

Bernoulli problem for the half Laplacian, we show that under starshapedness assumptions

on the data the free domain is starshaped. For the interior Bernoulli problem for the

spectral half Laplacian, we show that under convexity assumptions on the data the free

domain is convex and we prove a Brunn-Minkowski inequality for the Bernoulli constant.

For Bernoulli problems for the half Laplacian we use a variational approach, whereas for

Bernoulli problem for the spectral half Laplacian we use the Beurling method based on

subsolutions.

1 Introduction

The classical Bernoulli problem splits into two similar but di�erent cases, namely the exterior
and the interior Bernoulli problems. They are free boundary problems, both involving two
nested bounded open sets K and D, with K ⊂ D, and the Newtonian potential u of K with
respect to D, i.e. the solution to the following Dirichlet problem:

∆u = 0 in D \K with u = 0 on ∂D, u = 1 on ∂K.

Then they are formulated as follows:

1. (Exterior BP) given K and λ > 0, �nd D so that |∇u| = λ on ∂D;

2. (Interior BP) given D and λ > 0, �nd K so that |∇u| = λ on ∂K.

Both problems have been largely investigated since the pioneering work of Beurling [6], �rst
for the Laplacian and then for the p-Laplacian and other operators (we refer for instance to the
papers [3, 1, 37, 39, 40, 41, 19, 20, 8, 25] and references therein). According to literature, the
exterior problem is easier and it usually has a unique solution for every value of λ > 0, under
suitable geometric assumptions on the involved domains. The interior problem is instead in
general much more delicate and there is a parameter's threshold for λ, the so called Bernoulli
constant, which determines the existence of a solution.
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In this paper, we discuss the Bernoulli problem for the half Laplacian (−∆)1/2 (or the square
root of the Laplacian) and the spectral half Laplacian (−∆D)1/2 (or the spectral square root of
the Laplacian), where the latter depends on an open bounded set D ⊂ Rd.

Bernoulli problems for fractional Laplacians (−∆)α/2 are relevant in classical physical models
in mediums where long range interactions are present. For example, they are related to models
involving traveling wave solutions for planar cracks. They are also related to the theory of
semipermeable membranes, see e.g. [30]. Such problems have been addressed for the �rst
time by Ca�arelli, Roquejo�re, and Sire in [17] and subsequently they have been intensively
studied in recent years see e.g. [26, 27, 28, 29, 31, 33]. However, in these papers mainly the
regularity of the free boundary of variational solutions is studied. In our paper instead, we
concentrate on the existence and geometric properties of solutions. In particular, we show
that, under appropriate assumptions, some geometric properties of the given domain (namely,
starshapedness and convexity) imply similar geometric properties of the free domain. For
the interior problems we study the related Bernoulli constants, which determine existence of
solutions, and in the case of the spectral half Laplacian we prove a Brunn-Minkowski inequality
and some of its consequences.

As usual, for a smooth function φ : Rd → R the half Laplacian is given by

(−∆)1/2φ(x) = Ad

∫
Rd

2φ(x)− φ(x+ y)− φ(x− y)

|y|d+1
dy, x ∈ Rd (1)

where Ad = Γ((d+1)/2)π−(d+1)/2/2 is a normalization constant so that the Fourier-transform of
this operator has the symbol | · |, see e.g. [44] and the references therein. It is noteworthy that
the half Laplacian is a nonlocal operator and the boundary conditions have to be considered on
the complement of the domain of interest. Moreover, the boundary regularity is di�erent from
the Laplacian, so that the gradient of a solution in general does not exist up to the boundary
(see e.g. [43, 48]). The precise formulations of the exterior and interior Bernoulli problems for
the half Laplacian are as follows.

Problem 1.1 (The exterior Bernoulli problem for the half Laplacian). Given an open nonempty
and bounded set K ⊂ Rd and λ > 0, �nd a function u ∈ C(Rd) such that K ⊂ {u > 0}, {u > 0}
is bounded and of class C1, 

(−∆)1/2u = 0 in {u > 0} \K,

u = 1 in K,

u = 0 in Rd \ {u > 0},
(2)

and

lim
t→0+

u(θ + tν(θ))√
t

= λ, (3)

for all θ ∈ ∂{u > 0}, where ν(θ) denotes the interior normal of {u > 0} at θ.
Remark 1.1. Let s > 0 and Ks = sK. Then, if u is a solution of Problem 1.1 for K and λ, it
is easily seen that us(x) = u(x/s) solves the same problem for Ks and λ/

√
s (clearly we have

{us > 0} = s{u > 0}).
Problem 1.2 (The interior Bernoulli problem for the half Laplacian). Given an open nonempty
and bounded set D ⊂ Rd and λ > 0, �nd a function u ∈ C(Rd) such that 0 6 u 6 1, the set
{u = 1} is nonempty, contained in D and of class C1,{

(−∆)1/2u = 0 in D \ {u = 1},
u = 0 in Rd \D,

(4)
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and

lim
t→0+

u(θ)− u(θ + tν(θ))√
t

= λ, (5)

for all θ ∈ ∂{u = 1}, where ν(θ) denotes the exterior normal of {u = 1} at θ.
Di�erently from the half Laplacian appearing above, the de�nition of the spectral half

Laplacian depends on the domain of interest. Given a bounded open nonempty set D, let λk,
k ∈ N be the Dirichlet eigenvalues of the negative Laplacian −∆ in D with corresponding
eigenfunctions φk. Then, for u ∈ H1

0 (D) we de�ne the operator

(−∆D)1/2u =
∞∑
k=1

λ
1/2
k ukφk, where uk =

∫
D

u(x)φk(x) dx (6)

and we call it the spectral half Laplacian of u in D (see e.g. [16, 50]). Here, H1
0 (D) denotes

the closure of C∞c (D) with respect to the norm u 7→ ‖∇u‖L2(D). We emphasize that also the
spectral half Laplacian is nonlocal, however with nonlocality restricted to the set D. We focus
here on the interior BP.

Problem 1.3 (The interior Bernoulli problem for the spectral half Laplacian). Given an open
nonempty and bounded set D ⊂ Rd and λ > 0, �nd a function u ∈ C(D) such that 0 6 u 6 1,
the set {u = 1} is nonempty, contained in D and of class C1,{

(−∆D)1/2u = 0 in D \ {u = 1},
u = 0 on ∂D,

(7)

and

lim
t→0+

u(θ)− u(θ + tν(θ))√
t

= λ for all θ ∈ ∂{u = 1},

where ν(θ) denotes the exterior normal of {u = 1} at θ.
Remark 1.2. Similarly to the exterior BP, we can easily observe a homogeneity property of
solutions of Problems 1.2 and 1.3 with respect to the domain D. Precisely, let s > 0 and
Ds = sD. Then, if u is a solution of Problem 1.2 or Problem 1.3 for D and λ, it is easily seen
that us(x) = u(x/s) solves the same problem for Ds and λ/

√
s (clearly we have {us = 1} =

s{u = 1}).
We aim at giving a solution to Problems 1.1, 1.2, and 1.3 and investigate properties of these

solutions. Problems 1.1 and 1.2 are a kind of free boundary problem, which has been studied
in [17, 27, 28, 26, 29] and we make use of the regularity results for the free boundary shown in
these papers. In order to apply these results and to �nd solutions to the Bernoulli problems
with the half Laplacian, we study two suitable functionals whose constrained minimizers satisfy
a localized version of the above problems. For this, recall the Sobolev spaces H1(Rd+1) = {U ∈
L2(Rd+1) : ∇U ∈ L2(Rd+1)},

H1/2(Rd) = {u ∈ L2(Rd) : [u]1 <∞} with [u]1 =

∫∫
Rd×Rd

(u(x)− u(y))2

|x− y|d+1
dx dy,

and the continuous trace operator tr : H1(Rd+1) → H1/2(Rd), where the trace is considered
with respect to the boundary of Rd+1

+ := {x ∈ Rd+1 : xd+1 > 0}. Denoting by Ld the d-
dimensional Lebesgue measure on Rd, for a given λ > 0 we connect minimizers subject to the
constraint trU = 1 on K of

Eλ : H1(Rd+1)→ [0,∞], Eλ(U) =

∫
Rd+1

|∇U(x)|2 dx+
π

4
λ2 Ld({trU > 0}) (8)
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with solutions to Problem 1.1 (where {trU > 0} = D), and minimizers, subject to the con-
straints trU = 0 on Rd \D, of

Iλ,D : H1(Rd+1)→ [0,∞], Iλ,D(U) =

∫
Rd+1

|∇U(x)|2 dx+
π

4
λ2 Ld({trU < 1} ∩D) (9)

to Problem 1.2. More precisely, we study the following varational problems.

Problem 1.4. Given λ > 0 and K ⊂ Rd open nonempty and bounded, �nd a minimizer
U ∈ H1(Rd+1) of Eλ subject to the constraint trU = 1 on K.

Problem 1.5. Given λ > 0 and D ⊂ Rd open nonempty and bounded, �nd a nontrivial
minimizer U ∈ H1(Rd+1) of Iλ,D subject to the constraint trU = 0 on Rd \D.

Note that instead of studying functionals inH1(Rd+1) one may study functionals inH1/2(Rd).
To see this, recall that if u ∈ H1/2(Rd) and U ∈ H1(Rd+1) is given by the harmonic extension
of u, that is,

U(x, y) =

∫
Rd
P (x− z, |y|)u(z) dz, for x ∈ Rd, y 6= 0 (10)

where
P (x, y) = 2Ad

y

(|x|2 + y2)
d+1
2

, (11)

and evenly re�ected across ∂Rd+1
+ , we have∫

Rd+1

|∇U(x, y)|2 dx dy,= Ad[u]1. (12)

We prove that minimizers of Problems 1.4 and 1.5 satisfy (10). Hence, instead of minimizers
of Eλ, we may study minimizers of

eλ : H1/2(Rd)→ [0,∞], eλ(u) = Ad [u]1 +
π

4
λ2 Ld({u > 0}) (13)

and similarly, instead of minimizers of Iλ,D, we may study minimizers of

iλ,D : H1/2(Rd)→ [0,∞], iλ,D(u) = Ad [u]1 +
π

4
λ2 Ld({u < 1} ∩D). (14)

Now we state our main results for exterior and interior Bernoulli problems for the half
Laplacian. The �rst one concerns Problem 1.1 and, in order to properly state it, we use the
following notion of starshapedness: given B ⊂ K ⊂ Rd, K is called starshaped with center B,
if K is starshaped with respect to every x ∈ B.

Theorem 1.6. (i) Let K ⊂ Rd be an open nonempty bounded set. Then there exists a unique
solution U of Problem 1.4. Moreover, U satis�es

(a) 0 ≤ U ≤ 1,

(b) U is 1/2-Hölder continuous on any compact subset of Rd+1 \ (K × {0}),
(c) U is harmonic in the set {U > 0} \ (K × {0}) and in the set Rd+1 \ (Rd × {0}),
(d) {trU > 0} is bounded.
(e) U can be represented in Rd+1

+ by the harmonic extension of its trace u := trU ∈
H1/2(Rd), U is even in xd+1 variable and u satis�es (2). For any θ ∈ ∂{u > 0} \K
such that the interior unit normal vector to {u > 0} at θ exists (3) holds.
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(ii) If additionally K has a C2 boundary then ∂{u > 0} and K are disjoint and U ∈ C(Rd+1).

(iii) If additionally K has a C2 boundary and it is starshaped with center B = Bd
r (x0) for

some r > 0 and x0 ∈ K, then all the superlevel sets of U are starshaped with center
Bd+1
r ((x0, 0)), ∂{u > 0} is of class C∞, and u is a solution of Problem 1.1.

As it turns out, the solution found in Theorem 1.6 of Problem 1.1 is indeed the unique
solution, see Proposition 2.11 below. If K ⊂ Rd is an open nonempty bounded set with C2

boundary then using the regularity results obtained by De Silva and Savin [27, Theorem 1.1]
(see also [31, Theorem 1.1]) and Theorem 1.6 (ii) we obtain that for d = 2 (3) is satis�ed for
all θ ∈ ∂{u > 0} and for d ≥ 3 (3) is satis�ed for all θ ∈ ∂{u > 0} except a set of Hausdor�
dimension 6 d − 3. If additionally K is starshaped with center B then (3) is satis�ed for all
θ ∈ ∂{u > 0} for any dimension. This means that geometric assumptions onK in the third part
of Theorem 1.6 give the regularity of the complete free boundary (in general the free boundary
can be split into its regular part and its singular part see e.g. [27, 31]).

Our next result concerns the interior Bernoulli problem.
For D ⊂ Rd open nonempty and bounded, we de�ne the Bernoulli constant of D for the

half Laplacian as follows:

Λ(D) := inf
{
λ > 0 : Problem 1.5 has a nontrivial solution

}
. (15)

Then we have the following.

Theorem 1.7. Let D ⊂ Rd be an open nonempty bounded set. Then 0 < Λ(D) < ∞ and the
Problem 1.5 has a solution V if and only if λ > Λ(D). Moreover, V satis�es

(a) 0 ≤ V ≤ 1,

(b) V is 1/2-Hölder continuous on any compact subset of Rd+1 \ (Dc × {0}),

(c) V is harmonic in the set {V > 0} \ (Dc × {0}) and in the set Rd+1 \ (Rd × {0}).

(d) V can be represented in Rd+1
+ by the harmonic extension of its trace u := trV ∈ H1/2(Rd),

V is even in xd+1 variable and u is a solution of (4). For any θ ∈ ∂{u = 1} \Dc such that
the exterior unit normal vector to {u = 1} at θ exists (5) holds.

Note that if {u = 1} is nonempty, contained in D and of class C1 then u is a solution of
Problem 1.2. The Bernoulli constant for the half Laplacian satis�es simple monotonicity and
homogeneity properties, which we state explicitly for the sake of clarity.

Proposition 1.8. The Bernoulli constant for the half Laplacian is monotone decreasing with
respect to inclusion, i.e. if D1 ⊂ D2 ⊂ Rd are open nonempty bounded sets, then Λ(D1) >
Λ(D2). Moreover, Λ is positively homogeneous of degree −1/2, that is for any open nonempty
bounded set D ⊂ Rd and s > 0 we have

Λ(sD) = s−1/2Λ(D). (16)

Similarly to [25, Theorem 1.2] we have the following isoperimetric inequality for Λ(D).

Proposition 1.9. Let D ⊂ Rd be an open nonempty bounded set and let B ⊂ Rd be an open
ball with the same measure as D. Then Λ(D) > Λ(B) and equality only holds if D is a ball up
to a set of measure zero.
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We denote Bd
r (x0) = {x ∈ Rd : |x − x0| < r} for x0 ∈ Rd and r > 0. We drop the index d

here, if the dimension of the ball follows from context. We obtain the following rough estimate
on Λ(Bd

r (0)).

Lemma 1.10. For any r > 0 we have

2√
π

4
√
d√
r

3−(d+2)/2 < Λ(Bd
r (0)) <

2√
π

√
d√
r

2(d+3)/2

The above results imply the following estimate of Λ(D).

Corollary 1.11. For any r > 0 and any open nonempty bounded set D ⊂ Rd we have

2√
π

4
√
d π1/4

(Ld(D))1/(2d)(Γ(d/2 + 1))1/(2d)3(d+2)/2
≤ Λ(D) ≤ 2√

π

√
d2(d+3)/2√
r(D)

,

where r(D) is the inradius of D.

Now we present results concerning Problem 1.3. It is well known that problems for the
spectral half Laplacian (−∆D)1/2 may be translated to some local problem for Dirichlet Lapla-
cian in D × R, see e.g. [16]. More formally if D ⊂ Rd is an open nonempty bounded convex
set, K ⊂ D is a compact set and u ∈ C(D × R) is a bounded function satisfying

∆u = 0 in (D × R) \ (K × {0})
u = 0 on ∂D × R
u = 1 in K × {0}

then (−∆D)1/2u = 0 on D \ K. Using this we study the localized version of Problem 1.3 in
D × R. We apply the Beurling method, see e.g. [6, 41]. We construct a family of subsolutions
to the problem in D×R and by taking a limiting procedure we �nd a solution to the problem
in D ×R. Then it turns out that the restriction of this solution to D is a solution to Problem
1.3.

To state the result for Problem 1.3 we need to introduce the following class of functions.

De�nition 1.1. Let λ > 0, d ≥ 2 and D ⊂ Rd be an open, nonempty, bounded convex set.
Let K ⊂ D be a nonempty compact set and let vK : D × R → [0, 1], be the solution of the
following Dirichlet problem

∆vK = 0 in (D × R) \ (K × {0})
vK = 0 on ∂D × R
vK = 1 in K × {0}

(17)

We say that K ∈ F(D,λ) if

sup
y∈D\K

|vK(y, 0)− 1|
δ

1/2
K (y)

≤ λ, (18)

where δK(y) := dist(y,K) is the distance to K.
With an abuse of notation, for a function v : D ×R→ [0, 1] we write v ∈ F(D,λ) (and we say
that v is a subsolution of Problem 1.3) if v = vK for some K ∈ F(D,λ), i.e. if v is the solution
of (17) for some nonempty compact set K ⊂ D and it satis�es (18).
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The above de�nition is inspired by De�nition 2.1 in [41]: (18) is in a certain strong sense
an analog of the condition |∇v| ≤ λ. Note that if K ∈ F(D,λ) then vK ∈ C(D × R). Indeed,
D is convex so vK is continuous on ∂D × R. By (18) x → vK(x, 0) is continuous on D, which
implies that vK ∈ C(D × R).

Notice that, since K is compact, its distance from ∂D must be positive and, if x ∈ K, then
Bd
r (x) ⊂ D for r su�ciently small.
Assume that v ∈ F(D,λ) By the fact that v ≡ 0 on ∂D ×R, v takes values in [0, 1] and by

standard arguments we obtain that that v(x) → 0 as |x| → +∞. With this decay property it
can be easily shown (for instance, by the moving planes method) that v satis�es:

(i) for any x ∈ D and y ∈ R we have v(x,−y) = v(x, y),

(ii) for any x ∈ D if y2 > y1 ≥ 0 then v(x, y2) ≤ v(x, y1).

Thus, it follows that u := v(·, 0) is in particular a solution to (7) with

lim
t→0+

u(θ)− u(θ + tν(θ))√
t

6 λ

for any θ ∈ ∂K for which an exterior normal ν(θ) exists. Our main results concerning the
Bernoulli problem for the spectral half Laplacian are the following.

Theorem 1.12. Let d ≥ 2, D ⊂ Rd be a bounded open nonempty convex set, λ > 0 and suppose
that F(D,λ) is not empty. Then there exists a solution u to the free boundary Problem 1.3.
Moreover the set {u = 1} is convex.

Let d ≥ 2 and D ⊂ Rd be an open, nonempty, bounded convex set. Let us de�ne the
Bernoulli constant of D for the spectral half Laplacian as

ΛS(D) = inf{λ > 0 : F(D,λ) is not empty}.

ΛS(D) satis�es the same monotonicity and homogeneity properties as Λ(D), as explicitly stated
in the following proposition.

Proposition 1.13. Let d ≥ 2. The Bernoulli constant for the spectral half Laplacian is mono-
tone decreasing with respect to set inclusion and positively homogeneous of degree −1/2, that
is:

(i) if D1 ⊂ D2 ⊂ Rd are open nonempty bounded sets, then ΛS(D1) > ΛS(D2),

(ii) for any open nonempty bounded set D ⊂ Rd and s > 0 we have ΛS(sD) = s−1/2ΛS(D).

The proof of Theorem 1.12 implies that the found solution is in fact a solution of a slight
modi�cation of Problem 1.14:

Problem 1.14. Given an open nonempty and bounded set D ⊂ Rd and λ > 0, �nd a function
u ∈ C(D) satisfying all the conditions stated in Problem 1.3 and additionally

sup
y∈D\K

|u(y, 0)− 1|
δ

1/2
K (y)

= λ,

where K = {x ∈ Rd : u(x, 0) = 1}.

For the latter problem, we can indeed state a sharper existence result than Theorem 1.12.
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Proposition 1.15. Let d ≥ 2 and D ⊂ Rd be a bounded open nonempty convex set. Then a
solution of Problem 1.14 exists if and only if λ > ΛS(D).

An interesting open question is whether there exists a solution of Problem 1.3 which is not
a solution of Problem 1.14.

To give a rough estimate of ΛS, we can observe that, by (i) of Proposition 1.13, it follows
that

ΛS(Bd
R(D)(0)) ≤ ΛS(D) ≤ ΛS(Bd

r(D)(0)) ,

where r(D) is the inradius of D and R(D) is half the diameter of D. Hence we can give an
estimate of the Bernoulli constant from above, thanks to the following.

Proposition 1.16. For d ≥ 2 and r > 0 we have ΛS(Bd
r (0)) ≤ c̃d/

√
r, where

c̃d =
√

2

(
2
√

2Γ(d
2
)√

πΓ(d−1
2

)

)(
1− 1

π2d−2

∫ 1/3

0

(1− 3b)(d−2)/2

b1/2(1 + b)
db

)−1

.

Notice that we have c̃2 = 6/π ≈ 1.91, c̃3 ≈ 2.31.
As a consequence, if λ > c̃d/

√
r(D) (where r(D) is the inradius ofD) then the free boundary

Problem 1.3 has a solution. In the opposite direction, we may give an estimate from below of
ΛS(D) in terms of the ball with the same diameter as D, as we have already said. But we can
improve this estimate as a consequence of the following Brunn-Minkowski inequality.

Theorem 1.17. The Bernoulli constant for the spectral half Laplacian satis�es the following
Brunn-Minkowski inequality: let d ≥ 2, D0, D1 ⊂ Rd be open bounded nonempty convex sets
and s ∈ (0, 1), then

ΛS((1− s)D0 + sD1) 6
[
(1− s)ΛS(D0)−2 + sΛS(D1)−2

]−1/2
. (19)

Here A + B = {x + y : x ∈ A, y ∈ B} denotes the Minkowski addition of sets. Then, in
other words, the above theorem states that, as a functional on the class of convex bodies, Λ−2

S

is concave with respect to Minkowski addition.
We recall that the classical Brunn-Minkowski inequality was born in the framework of con-

vex geometry and then extended to Lebesgue measurable sets: it states that the Lebesgue
measure in Rd raised to power 1/d is concave with respect to Minkowski addition. It is a
powerful inequality, at the core of the Brunn-Minkowski theory of convex bodies, it is strongly
connected to many other important inequalities (in particulary to the isoperimetric inequal-
ity) and the related research is still very active (see for instance [36, 21, 22, 34, 35] and the
beautiful survey paper by Gardner [38] for more references). Similar inequalities hold for other
geometric quantities, like perimeter or quermassintegrals of convex bodies, furthermore there is
a functional version (namely, the Borell-Brascamp-Lieb inequality, see [10, 12]) and, in recent
years, Brunn-Minkowski inequalities have been proved for several functionals from calculus of
variations (see for instance [11, 38, 24]), in particular, in connection with the present paper,
for the Bernoulli constant [8] and for the 1-Riesz capacity [47].

As it is now well known, every Brunn-Minkowski inequality yields an Urysohn's type in-
equality by a standard procedure. Then, as a corollary of the previous theorem, we get the
following.

Corollary 1.18. If d ≥ 2, D ⊂ Rd is an open nonempty bounded convex set, then

ΛS(D) > ΛS(B) ,

where B is a ball with the same mean width of D.
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We recall that the mean width w(D) of a convex set D ⊂ Rd is de�ned as follows

w(D) =
2

Hd−1(Sd−1)

∫
Sd−1

hD(ξ)Hd−1(dξ)

where hD denotes the support function of D, i.e.

hD(y) = sup
x∈D
〈x, y〉 for y ∈ Rd ,

Hd−1 is the (d − 1)-dimensional Hausdor� measure and Sd−1 is the unit sphere in Rd. Notice
that hD is a 1-homogeneous convex function in Rd: for a given direction ξ ∈ Sd−1, it represents
the signed distance of the support hyperplane to D with exterior unit normal ξ from the origin
and the width of the set D in direction ξ is given by |hD(ξ) − hD(−ξ)|. Clearly, the mean
width is never greater than the diameter (indeed, it is strictly smaller unless D is a ball). In
the plane, w(D) is just a multiple of the perimeter, exactly we have w(D) = |∂D|/π. Then
Corollary 1.18, for d = 2, can be rephrased as follows: among convex planar sets with given
perimeter, balls have the smallest Bernoulli constant for the spectral half Laplacian.

We adopt the convention that constants denoted by c, c0, c1, . . . may change their value from
one use to the next. On the other hand, constants denoted by C0, C1, . . . do not change their
value in the whole paper.

The paper is organized as follows. In Section 2 we study the exterior Bernoulli problem for
the half Laplacian, in Section 3 the interior Bernoulli problem for the half Laplacian and in
Section 4 the interior Bernoulli problem for the spectral half Laplacian. Section 5 is devoted to
Brunn-Minkowski inequality for Bernoulli constant for the spectral half Laplacian. In Appendix
we give a proof of an auxiliary, technical lemma, concerning H1/2(Rd).

We �nish this introduction with some remarks concerning other fractional Laplacians and
the exterior Bernoulli problem for the spectral half Laplacian. One may ask why we study
Bernoulli problems for the half Laplacian (−∆)1/2 and the spectral half Laplacian (−∆D)1/2

and not for all fractional Laplacians (−∆)α/2 and spectral fractional Laplacians (−∆D)α/2. The
reason is that for α = 1 there are known some important results, which are not available for
other α. In particular, in our paper in studying the exterior Bernoulli problem for (−∆)1/2

we use Theorem 1.2 from [27], which roughly speaking states that a Lipschitz free boundary
is smooth. Such a result is known only for (−∆)1/2 and not for other fractional Laplacians.
Similarly, in studying the interior Bernoulli problem for (−∆D)1/2 we use some deep results
about harmonic functions from [23] to show that there exists a solution with convex free set.
We do not know how to generalize it to other spectral fractional Laplacians. One may also ask
why we did not study the exterior Bernoulli problem for the spectral half Laplacian. It turns
out that for this problem the condition on the free boundary is not of the type (3) but of the
type |∇u| = λ. So, in some sense, this problem has completely di�erent nature than problems
we study in our paper.

2 The exterior Bernoulli problem for the half Laplacian

Lemma 2.1. Let K ⊂ Rd be open nonempty and bounded, λ > 0, and let U ∈ H1(Rd+1) be a
minimizer of Eλ subject to the constraint trU = 1 on K Then

(i) 0 ≤ U ≤ 1,

(ii) U is 1/2-Hölder continuous on any compact subset of Rd+1 \ (K × {0}), and
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(iii) U is harmonic in the set {U > 0} \ (K × {0}) and in the set Rd+1 \ (Rd × {0}).

Proof. For (i) note �rst that if f : R → R is Lipschitz continuous with f(0) = 0, then f(v) ∈
H1(Rd+1) for v ∈ H1(Rd+1) (see [46]). If m := essinf U < 0, we may take ε ∈ (0,−m) and
consider the Lipschitz function f : R → R, f(t) = max{t,−ε}. Then Ld({tr(f(U)) > 0}) =
Ld({tr(U) > 0}) and, for ε small enough,∫
Rd+1

|∇f(U(x))|2 dx =

∫
Rd+1

(f ′(U(x))2|∇U(x)|2 dx =

∫
{U>−ε}

|∇U(x)|2 dx <
∫
Rd+1

|∇U(x)|2 dx.

But then Eλ(f(U)) < Eλ(U), a contradiction. Thus U > 0. Similarly, with f(t) = min{t, 1+ε}
it follows that we must have U 6 1.
Note that U is in particular a local minimizer in the sense as studied in [17]. To be precise,
for every W ∈ H1(B), where B is any ball in Rd+1 with center x ∈ Rd × {0} such that
B ∩ (K × {0}) = ∅ and U = W on ∂B we have

J(U,B) 6 J(W,B),

where

J(u,B) =

∫
B

|∇u(x)|2 dx+
π

4
λ2Ld({tru > 0} ∩B).

By [17, Theorem 1.1] it then follows that U ∈ C1/2(M) for any compact set M ⊂ Rd+1 \ (K ×
{0}), that is, (ii) holds.
To see (iii), note that {U > 0} is open by (ii) and thus we may pick ψ ∈ C∞c ({U > 0}\(K×{0}))
and consider U + tψ for t ∈ R. We then have

0 = lim
t→0

Eλ(U + tψ)− Eλ(U)

t

= 2

∫
Rd+1

∇U(x) · ∇ψ(x) dx+
π

4
λ2 lim

t→0

Ld({tr(U + tψ) > 0})− Ld({tr(U) > 0})
t

= 2

∫
Rd+1

∇U(x) · ∇ψ(x) dx,

so that U is harmonic in {U > 0} \ (K × {0}). Similarly, picking ψ ∈ C∞c (Rd+1 \ (Rd × {0}))
we have

0 = lim
t→0

Eλ(U + tψ)− Eλ(U)

t
= 2

∫
Rd+1

∇U(x) · ∇ψ(x) dx

so that U is harmonic in Rd+1 \ (Rd × {0}).

In the following, let λ > 0 be a �xed constant.

Lemma 2.2. Let B ⊂ K ⊂ Rd be open nonempty bounded sets. If U is minimizer of Eλ subject
to the constraint trU = 1 in K and V is a minimizer of Eλ subject to the constraint trV = 1
in B, then U > V . In particular, there is at most one solution of Problem 1.4

Proof. We follow part of the proof of [2, Lemma 3.8]. By de�nition, W := max{U, V } ∈
H1(Rd+1) satis�es tr(W ) = 1 in K. Moreover, the function w := min{U, V } ∈ H1(Rd+1)
satis�es tr(w) = 1 in B. For u ∈ H1(Rd+1) we let

Ru :=

∫
Rd+1

|∇u(x)|2 dx.

10



Since V is a minimizer of Eλ subject to the constraint tr(V ) = 1 in B, we have

RV +
π

4
λ2
(
Ld({tr(w) > 0}) + Ld({tr(V ) > 0} \ {tr(w) > 0})

)
= RV +

π

4
λ2Ld({tr(V ) > 0}) = Eλ(V ) 6 Eλ(w) = Rw +

π

4
λ2(Ld({tr(w) > 0}),

that is
RV +

π

4
λ2Ld({tr(V ) > 0} \ {trw > 0}) 6 Rw.

Using that RW +Rw = RV +RU holds, we �nd

Eλ(W ) = RW +
π

4
λ2Ld({trW > 0})

= RV +RU −Rw +
π

4
λ2
(
Ld({tr(U) > 0}) + Ld({tr(V ) > 0} \ {tr(w) > 0})

)
6 Eλ(U).

Hence, Eλ(W ) = Eλ(U), that is, W is a minimizer of Eλ subject to the constraint tr(W ) = 1
in K. In particular, with a similar calculation we �nd

Eλ(w) = Rw +
π

4
λ2Ld({trw > 0}) = RV +RU −RW +

π

4
λ2Ld({trw > 0})

= RV +
π

4
λ2Ld({trW > 0})− π

4
λ2Ld({trU > 0}) +

π

4
λ2Ld({trw > 0})

= RV +
π

4
λ2Ld({tr(V ) > 0} \ {tr(w) > 0})

)
+
π

4
λ2Ld({trw > 0}) = Eλ(V ).

Hence, w is a minimizer of Eλ subject to the constraint tr(w) = 1 in B. It remains to show
W = U or equivalently w = V . Following [4, Lemma 8.1], assume on the contrary that there
is x0 ∈ {V > 0} ∩ {U > 0} with V (x0) = U(x0) and the function U − V changes sign in any
neighborhood of x0. Note that this implies that w is not harmonic in any neighborhood of
x0, but this contradicts Lemma 2.1(iii), since w is a minimizer of Eλ subject to the constraint
w = 1 in B, w(x0) > 0, and w is continuous in a small enough neighborhood of x0.

Lemma 2.3. There exists a unique solution of Problem 1.4.

Proof. The existence of a solution of Problem 1.4 follows from a standard argument (see [4,
Theorem 1.1], [3] or [17, Proposition 3.2]). Let r0 = inf{r > 0 : K ⊂ Bd

r (0)}. Let X := {u ∈
H1(Rd+1) : tr(u) = 1 on K} and Xr := {u ∈ H1(Bd+1

r (0)) : tr(u) = 1 on K} for r > r0.
Clearly, X and Xr are nonempty and convex and there is U1 ∈ X such that Eλ(U1) <∞. Let
(Uk)k ⊂ X be a minimizing sequence. Then (Uk)k is bounded in Xr for any r > r0. But then
there is U ∈ X such that up to a subsequence

Uk ⇀ U weakly in Xr for any r > r0, (20)

Uk → U almost everywhere in Rd+1, and (21)

1{Uk>0}
∗
⇀ γ in L∞(Rd), (22)

where γ ∈ L∞(Rd) satis�es 0 6 γ 6 1 and it is equal to 1 almost everywhere in {(U) > 0}.
Note that (21) follows by the compact embedding of H1(Bd+1

r (0)) into L2(Bd+1
r (0)) so that Uk

converges strongly in L2(Bd+1
r (0)). (22) follows from the fact that any bounded sequence in

L∞(Rd) has a weak star convergent subsequence. To conclude, for any r > r0 we have∫
Bd+1
r (0)

|∇U(x)|2 dx+
π

4
λ2

∫
Bdr (0)

γ(x) dx

6 lim inf
k→∞

∫
Bd+1
r (0)

|∇Uk(x)|2 dx+
π

4
λ2 lim

k→∞
Ld({trUk > 0})

6 lim inf
k→∞

Eλ(Uk).
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Sending r → ∞, it follows that U is a minimizer of Eλ|X , that is U solves Problem 1.4. The
uniqueness now follows from Lemma 2.2.

Lemma 2.4. Let g : (0,∞)→ [0,∞) be nonincreasing and assume there is r0 > 0 such that

lim
t→r−0

g(t)− lim
t→r+0

g(t) = ε > 0.

Then u : Rd → R, u(x) = g(|x|) is not in H1/2(Rd). In particular, the harmonic extension
U(x) =

∫
Rd P (x− y)u(x) dy, where P is as in (10), is not in H1(Rd+1

+ ).

The statement of this Lemma seems to be known, but since we could not �nd a good
reference, we include an elementary proof in the appendix.

Lemma 2.5. Let B be a ball in Rd. Then for any λ > 0 the minimizer V of Eλ subject to
the constraint trV = 1 in B, has up to translation a trace which is radially symmetric and
decreasing in the radial direction. In particular, {trV > 0} is bounded.
Moreover, ∂{trV > 0} ∩B = ∅ and trV is continuous in Rd.

Proof. In the following, we may assume without restriction that B = Br(0) for some r > 0.
Note next that a unique minimizer V of Eλ exists with trV = 1 in B by Lemma 2.3. Recall
that the polarization of a function U for a given hyperplane H = {x · e > c}, e ∈ Rd+1, |e| = 1,
c > 0 is given by

UH(x) =

{
max{u(x), u(RH(x))} x ∈ H;

min{u(x), u(RH(x))} x ∈ Rd+1 \H,
where RH : Rd → Rd denotes the re�ection of a point at ∂H. The polarization satis�es∫

Rd+1

|∇uH(x)|2 dx =

∫
Rd+1

|∇u(x)|2 dx

and thus Eλ(UH) 6 Eλ(U) if e ∈ Rd × {0}. In the following, denote by V ∗ ∈ H1(Rd+1) a
function such that trV ∗ is the radially symmetric rearrangement of trV , which is decreasing
in the radial direction. Note that there exists a sequence of hyperplanes H1, . . . such that (see
[51])

lim
n→∞

((VH1) . . .)Hn = V ∗

strongly in L2(Rd+1) and thus it follows that Eλ(V
∗) 6 Eλ(V ). Since by construction also

trV ∗ = 1 on B, by uniqueness we must have V = V ∗. To see that ∂{trV > 0} ∩ B = ∅ it is
enough to note that trV must be continuous by Lemma 2.4 and Lemma 2.1(iii).

Corollary 2.6. Let K ⊂ Rd be an open nonempty bounded set and let U be a minimizer of Eλ
subject to the constraint trU = 1 on K. Then {trU > 0} is bounded.

Proof. Since K is a bounded, there is a ball B ⊂ Rd with K ⊂ B. Letting V be given by
Lemma 2.5 in B, Lemma 2.1 and Lemma 2.2 imply 0 6 U 6 V . In particular, it follows that
{trU > 0} ⊂ {trV > 0} and the claim follows.

Corollary 2.7. Assume K ⊂ Rd is open nonempty and bounded with C2 boundary. Let U ∈
H1(Rd+1) be a minimizer of Eλ subject to the constraint trU = 1 in K given by Lemma 2.3.
Then the sets ∂{trU > 0} and K are disjoint. In particular trU is continuous in Rd and U
can be represented in Rd+1

+ by the harmonic extension of trU and hence U > 0 in Rd+1
+ .
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Proof. For the �rst part we proceed as in [2, Lemma 3.8]. Since K is with C2 boundary, we
may �x a ball B tangentially contained in K. Without loss of generality we may assume that
B has center 0. Having a radially symmetric and continuous minimizer V of Eλ subject to the
constraint trV = 1 in B by Lemma 2.5, Lemma 2.2 implies U > V . The fact that {trV > 0}
does not touch B and since B is chosen arbitrary implies ∂{trU > 0} and K are disjoint.
Moreover, it follows that trU is continuous at ∂K (and thus in Rd) since trV is continuous.

Lemma 2.1 and the �rst part imply that trU ∈ H1/2(Rd) ∩ C(Rd) and U is harmonic in
Rd+1

+ . Since moreover 0 6 U 6 1 the function can be represented by the harmonic extension of
its trace in Rd+1

+ , see (10). In particular, since trU > 0, it follows that U > 0 in Rd+1
+ .

Lemma 2.8. Let K ⊂ Rd be an open nonempty bounded set with C2 boundary. Let U ∈
H1(Rd+1) be a minimizer of Eλ subject to the constraint trU = 1 on K, and denote ϕ :=
trU ∈ H1/2(Rd). Then

(i) ϕ satis�es 0 ≤ ϕ ≤ 1 and

(ii) ϕ is 1/2-Hölder continuous on any compact subset of Rd \K.

(iii) ϕ is a minimizer among all functions in H1/2(Rd) that are equal to 1 almost everywhere
on K of the functional eλ. In particular, ϕ is 1-harmonic in {ϕ > 0} \K.

Proof. The statements of (i) and (ii) follow immediately from Lemma 2.1. Using the properties
of the extension we �nd with the properties of U given by Lemma 2.1:

inf
V ∈H1(Rd+1)
tr(V )=1 in K

Eλ(V ) = Eλ(U) = 2
Ad

2
[ϕ]1 +

π

4
λ2Ld({ϕ > 0}) = eλ(ϕ).

On the other hand, taking any function v ∈ H1/2(Rd) with v = 1 on K and considering by
V its harmonic extension in Rd+1

+ , we may extend V symmetrically to a function on Rd+1. It
follows that V ∈ H1(Rd+1) satis�es trV = 1 on K so that it follows

eλ(v) = Eλ(V ) > Eλ(U) = eλ(ϕ).

Hence, ϕ is a minimizer of eλ as claimed. The 1-harmonicity of ϕ in {ϕ > 0} \ K follows
analogously to the proof of Lemma 2.1(iii) by taking ψ ∈ C∞c ({ϕ > 0} \K) and noting that

0 = lim
t→0

eλ(ϕ+ tψ)− eλ(ϕ)

t
= 2Ad

∫∫
Rd×Rd

(ϕ(x)− ϕ(y))(ψ(x)− ψ(y))

|x− y|d+1
dx dy.

Remark 2.1. (i) Note that similarly to Lemma 2.1 and Lemma 2.3 it can be shown that there
exists a minimizer v ∈ H1/2(Rd) of eλ with v = 1 in K (see [17, Proposition 3.2]) and this
minimizer satis�es 0 6 v 6 1 with a similar argument.

(ii) Furthermore, note that also the converse of Lemma 2.8 is true in the following sense: If
v ∈ H1/2(Rd) is any minimizer of Eλ among all functions satisfying v = 1 in K, and V
denotes the harmonic extension to Rd+1

+ . Then, by denoting again with V the symmetric
extended function V ∈ H1(Rd+1) we have with the �rst remark

Eλ(V ) = eλ(v) = inf
w∈H1/2(Rd)
w=1 in K

eλ(w) = inf
W∈H1(Rd+1)
tr(W )=1 in K

Eλ(W ),
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where we have used that due to Lemma 2.7 any minimizer of Eλ with trace equal to 1 in
K is bounded and harmonic in Rd+1

+ and can be represented by the harmonic extension
of its trace. In particular, it follows that such a minimizer v of Eλ is locally 1/2-Hölder
continuous in Rd \K and 1-harmonic in {v > 0} \K. Here, the set K does not need to
have a C2 boundary.

Lemma 2.9. If an open nonempty bounded set K ⊂ Rd with C2 boundary is starshaped with
center Bd

δ (0) for some δ > 0 then {U > ε} is starshaped with center Bd+1
δ (0) for all 0 ≤ ε < 1,

where U ∈ H1(Rd+1) is a minimizer of Eλ subject to the constraint trU = 1 on K.

Proof. For any r ≥ 1 and V ∈ H1(Rd+1) put λr = λ/
√
r,

J(r, V ) = Jλr(V ) =

∫
Rd+1

|∇V (x)|2 dx+
π

4
λ2
rLd({trV > 0}),

Ur(x) = U(x/r), U+
r (x) = max{U(x), Ur(x)}, U−r (x) = min{U(x), Ur(x)}, rK = {rx : x ∈ K}.

We have trUr ≥ trU on rK so trU+
r = trUr and trU−r = trU on rK. We have

J(1, U) ≤ J(1, U−r ) (23)

because U minimizes J(1, v) in H1(Rd+1) subject to the constraint that tr v = trU on K.
Similarly

J(r, Ur) ≤ J(r, U+
r )

because Ur minimizes J(r, v) in H1(Rd+1) subject to the constraint that tr v = trUr on rK.
For r > 1 we also have

0 ≥ J(r, Ur)− J(r, U+
r )

= J(1, Ur)− J(1, U+
r ) +

(
π

4

λ2

r
− π

4
λ2

)
(Ld({trUr > 0})− Ld({trU+

r > 0}))

≥ J(1, Ur)− J(1, U+
r ).

We conclude that
J(1, Ur) ≤ J(1, U+

r ). (24)

However,
J(1, U) + J(1, Ur) = J(1, U−r ) + J(1, U+

r ). (25)

By combining (23), (24) and (25) we get

J(1, U) = J(1, U−r ), J(1, Ur) = J(1, U+
r ).

It follows that by Lemma 2.2

U = U−r ≤ U+
r = Ur on Rd+1

so that {U > ε} is starlike with respect to the origin. The proof can be repeated with the
origin replaced by any x0 ∈ Bd

δ (0), to show that {U > ε} is starlike with respect to all points
in Bd+1

δ (0).

Lemma 2.10. Let U be the uniquely determined solution of Problem 1.4, where K ⊂ Rd is an
open nonempty bounded set, has C2 boundary and is starshaped with center Bρ(x0) for some
ρ > 0 and x0 ∈ K. Denote u := trU . Then ∂{u > 0} is of class C∞ and u is a solution of
Problem 1.1.
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Proof. (2) holds by Lemma 2.8. Next, note that by the properties of K we have u ∈ C(Rd) ∩
H1/2(Rd) and {u > ε} is starshaped with center Bρ(x0) for any ε > 0. Thus ∂{u > 0} is of
class C0,1 and (2) in particular also hold in a viscosity sense. Next, note that by denoting for
V ∈ H1(Rd+1) the dilation Vc(x) := V (cx) for c > 0, we have∫

Rd+1

|∇Vc(x)|2 dx+ Ld({x ∈ Rd : tr(Vc)(x) > 0})

=

∫
Rd+1

|∇V (cx)|2c2 dx+ Ld({x ∈ Rd : tr(V )(cx) > 0})

= c1−d
∫
Rd+1

|∇V (z)|2 dz + c−dLd({z ∈ Rd : tr(V )(z) > 0})

= c1−d(

∫
Rd+1

|∇V (z)|2 dz + c−1Ld({z ∈ Rd : tr(V )(z) > 0})).

Hence, if U is a minimizer of Eλ subject to the constraint trU = 1 on K, then the dilation U 4
πλ2

is a local minimizer as studied in [17] subject to the constraint that the trace is 1 on πλ2

4
K.

Thus we have for a.e. θ ∈ ∂{u > 0} by [17, Theorem 1.4], see also [33, Proposition 2.1] for the
constant, noting that ν(πλ

2

4
θ) = ν(θ),

lim
t→0+

u(θ + tν(θ))√
t

= lim
t→0+

trU(θ + tν(θ))√
t

= lim
t→0+

√
πλ2

4
trU 4

πλ2
(πλ

2

4
θ + πλ2

4
tν(πλ

2

4
θ))√

πλ2

4
t

=

√
πλ2

4

Γ(3/2)
= λ

as claimed. Then, by [27, Theorem 1.2] and [28, Theorem 1.1] it follows that ∂{u > 0} is of
class C∞ and thus (3) holds for all θ ∈ ∂{ϕ > 0} as claimed.

Proof of Theorem 1.6. The existence and uniqueness is given by Lemma 2.3. Properties (a)�
(c) follow from Lemma 2.1. (d) follows from Corollary 2.6. By standard arguments and [17,
Theorem 1.4] (see also [33, Proposition 2.1] for the constant) we obtain (e). If K is in addition
with C2 boundary, Corollary 2.7 yields the continuity of the minimizer, and if K is starshaped
with center Br(x0) for some �xed x0 ∈ K, r > 0, then the last set of assertions follows from
Lemma 2.9 and Lemma 2.10.

We close this section with a remark concerning the solution of Problem 1.1.

Proposition 2.11. Let K ⊂ Rd be an open nonepmpty and bounded set and λ > 0. Assume
there is u ∈ C(Rd) such that K ⊂ {u > 0}, {u > 0} is bounded and of class C2,{

(−∆)1/2u = 0 in {u > 0} \K,

u = 1 in K,
(26)

and lim
t→0+

u(θ+tν(θ))√
t

= λ for all θ ∈ ∂{u > 0}. Then u is uniquely determined. In particular, if

K is in addition of class C2 and starshaped with respect to Br(x0) for some x0 ∈ Rd and r > 0,
then there is one and only one solution of Problem 1.1 given by Theorem 1.6.

Proof. In the following, we assume without loss of generality that 0 ∈ K. Let u1, u2 be two
solutions. Note that the strong maximum principle implies 0 < ui < 1 in Di\K, i = 1, 2, where
we set Di := {ui > 0}. Note that w := min{u1, u2} is 1-subharmonic in Dw := {w > 0} \K,
that is (−∆)1/2w(x) ≥ 0 for x ∈ Dw. If Di 6= {w > 0}, then the strong maximum principle
implies w < ui in {w > 0} \K and thus we must have either {w > 0} = D1 or {w > 0} = D2.
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Without loss of generality, we may assume {w > 0} = D2, but then we have w = u2. We thus
have u1 > u2 in D2 \K. Since D1 is bounded, we can �nd ε ∈ (0, 1) such that εD1 ⊂ D2 and
there is θ ∈ ∂(εD1) ∩ ∂D2. The function v(x) = u1(x/ε) satis�es

(−∆)1/2v = 0 in ε(D1 \K), v = 0 in Rd \ εD1, and v = 1 in εK.

Thus in particular, v < u2 in εD1 \K by the strong maximum principle. In particular, we have
at θ

λ = lim
t→0+

u2(θ + tν(θ))√
t

> lim
t→0+

v(θ + tν(θ))√
t

= lim
t→0+

u1(1
ε
θ + t

ε
ν(θ))√

t

= lim
t→0+

u1(1
ε
θ + tν(θ))
√
ε
√
t

=
λ√
ε
,

where we have used that 1
ε
θ ∈ ∂D1 and ν(θ) = ν(1

ε
θ). Since ε ∈ (0, 1), this is clearly a

contradiction and thus we must have D1 = D2, but then u1 = u2 as claimed.

3 The interior Bernoulli problem for the half Laplacian

By similar arguments as in the proof of Lemma 2.1 by replacing U by 1 − V we obtain the
following result.

Lemma 3.1. Let D ⊂ Rd be an open nonempty bounded set, λ > 0, and let V ∈ H1(Rd+1) be
a minimizer of Iλ,D subject to the constraint trV = 0 on Rd \D. Then

(i) 0 ≤ V ≤ 1,

(ii) V is 1/2-Hölder continuous on any compact subset of Rd+1 \ ((Rd \D)× {0}), and

(iii) V is harmonic in the set {V < 1} \ ((Rd \D)× {0}) and in the set Rd+1 \ (Rd × {0}).

We follow closely [25] to show that there is a nontrivial minimizer of Problem 1.5 for λ large
enough. To �nd a nontrivial minimizer, it will be useful to �nd a function V ∈ H1(Rd+1) \ {0}
with trV = 0 on Rd \D such that

Iλ,D(V ) < Iλ,D(0) =
π

4
λ2Ld(D). (27)

Proposition 3.2. Let D ⊂ Rd be an open nonempty bounded set. Then Λ(D) <∞. Moreover,
for any λ > Λ(D) it follows that there exists V with trV = 0 on Rd \ D such that (27) is
satis�ed and for any λ 6 Λ(D) we have

min
V ∈H1(Rd+1)

trV=0 on Rd \D

Iλ,D(V ) = Iλ,D(0) =
π

4
λ2Ld(D). (28)

Proof. We follow closely the steps described in [25, Proposition 2.1].

(C1) If (27) holds, then there exists a nontrivial minimizer V of Iλ,D subject to the constraint
trV = 0 on Rd \D.

Indeed, the proof follows analogously to the existence part of the proof of Lemma 2.3 by choosing
a minimizing sequence. The obtained minimizer then must be nontrivial by the assumption
(27) and thus (C1) holds.
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(C2) For λ large enough it follows that (27) holds.

To see this, let Φ ∈ C∞(Rd+1) with supp tr Φ ⊂ D and tk Ld({tr Φ > 1}) > 0. Then

Iλ,D(Φ)− Iλ,D(0) =

∫
Rd
|∇Φ(x)|2 dx+

π

4
λ2(Ld({tr Φ < 1} ∩D)− Ld(D))

6
∫
Rd
|∇Φ(x)|2 dx− π

4
λ2Ld(tr Φ > 1}).

Sending λ→∞, it follows that (C2) holds.

(C3) The set of all λ > 0 such that Iλ,D has a nontrivial minimizer V subject to the constraint
trV = 0 on Rd \D is connected.

For this, let µ > 0 and assume that there is a nontrivial minimizer V of Iµ,D subject to the
constraint trV = 0 on Rd \D. Note that we must have Iµ(V ) 6 Iµ(0) and thus in particular
Ld({trV < 1} ∩D) < Ld(D). But then for λ > µ we have

Iλ,D(V )− Iλ,D(0) 6
π

4
(λ2 − µ2)

(
Ld({trV < 1} ∩D)− Ld(D)

)
< 0.

Hence (27) is satis�ed and by (C1) it follows that (C3) is satis�ed. Note that the proof of (C3)
in particular implies that if λ > Λ(D), then there exists V with trV = 0 on Rd \D such that
(27) is satis�ed.
To �nish the proof of the proposition, �rst note that if λ < Λ(D), then clearly (28) holds due
to (C1). Next, let µ = Λ(D) and let V be a minimizer of Iµ,D subject to the constraint trV = 0
on Rd \D. Assume Iµ,D(V ) < Iµ,D(0). Then it follows for λ < µ, λ close to µ, that we have

Iλ,D(V )− Iλ,D(0) = Iµ,D(V )− Iµ,D(0) +
π

4
(λ2 − µ2)

(
Ld({trV < 1} ∩D)− Ld(D)

)
< 0.

Thus (C1) gives the existence of a nontrivial minimizer subject to the usual constraint in
contradiction to the de�nition of Λ(D).

Corollary 3.3. Let D ⊂ Rd be an open nonempty bounded set. If λ > Λ(D), then there exists
a solution V to Problem 1.5, which is nonnegative and bounded in Rd+1. In particular, V is
given in Rd+1

+ by the harmonic extension of u := trV ∈ H1/2(Rd) and thus V > 0 in Rd+1
+ .

Moreover, u satis�es

(i) 0 6 u 6 1

(ii) u is 1/2-Hölder continuous on any compact subset of D.

(iii) u is the minimizer of the functional iλ,D among all the functions in H1/2(Rd) which vanish
in Rd \D, and, in particular, u is 1-harmonic in {u < 1} ∩D.

Proof. The existence follows by the same arguments as in the proof of Lemma 2.3. The fact that
V is given by the harmonic extension of trV follows by standard arguments. The properties (i),
(ii) follow from Lemma 3.1. The proof of (iii) is similar to the proof of (iii) in Lemma 2.8.

Lemma 3.4. Let D ⊂ Rd be open nonempty and bounded. Then there exists C = C(d) > 0
and p = p(d) > 1 such that

Ld({trV > 1} ∩D) 6 C
(∫

Rd+1

|∇V (x)|2 dx
)p

(29)

for all nonnegative bounded V ∈ H1(Rd+1), V even in xd+1 with trV = 0 on Rd \D and such
that V is harmonic in Rd+1 \ (Rd × {0}).
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Proof. A function V as stated can be represented by the harmonic extension of its trace. If
d > 1, then by the fractional Sobolev inequality (see e.g. [15, Theorem 3.2.1]) we have

Ld({trV > 1} ∩D) 6
∫
D

| trV (x)| 2d
d−1 dx 6 C[trV ]

d
d−1

1 =
C

A
d
d−1

d

(∫
Rd+1

|∇V (x)|2 dx
) d
d−1
,

using the energy identity (12). If d = 1, then trV ∈ Lq(Rd) for any q < ∞ and the claim
follows similarly.

Proposition 3.5. Let D ⊂ Rd be open nonempty and bounded. Then for λ = Λ(D) there exists
a solution of Problem 1.5.

Proof. The proof follows with Lemma 3.4 similar to the proof of [25, Proposition 2.3]. By
De�nition of Λ(D) and by Lemma 3.2, there is a strictly decreasing sequence (λn)n ⊂ (Λ(D),∞)
with lim

n→∞
λn = Λ(D) such that for every n ∈ N there is a nontrivial minimizer Un ∈ H1(Rd+1)

subject to the constraint trUn = 0 on Rd \D and we have

Iλn,D(Un) =

∫
Rd+1

|∇Un(x)|2 dx+
π

4
λ2
nLd({trUn < 1} ∩D) 6

π

4
λ2
nLd(D) = Iλn,D(0). (30)

Let r0 = inf{r > 0 : D ⊂ Bd
r (0)}. Let X := {u ∈ H1(Rd+1) : tr(u) = 0 on Dc} and

Xr := {u ∈ H1(Bd+1
r (0)) : tr(u) = 0 on Dc} for r > r0. Then, similarly as in the proof of

Lemma 2.3, there is U ∈ H1(Rd+1) such that up to a subsequence

Un ⇀ U weakly in Xr for any r > r0,

Un → U almost everywhere in Rd+1, and

1{trUn<1}∩D
∗
⇀ γ in L∞(Rd),

where γ ∈ L∞(Rd) satis�es 0 6 γ 6 1 and it is equal to 1 almost everywhere in {trU < 1}∩D.
Then, for any r > r0 we have∫
Bd+1
r (0)

|∇U(x)|2 dx+
π

4
Λ2(D)

∫
Bdr (0)

γ(x) dx 6 lim inf
n→∞

∫
Bd+1
r (0)

|∇Un(x)|2 dx+
π

4
λ2
nLd({trUn < 1} ∩D)

6 lim inf
n→∞

Iλn,D(Un).

Sending r →∞, we �nd for any V ∈ H1(Rd+1) with trV = 0 on Rd \D

IΛ(D),D(U) 6 lim inf
n→∞

Iλn,D(Un) 6 lim inf
n→∞

Iλn,D(V ) = IΛ(D),D(V ). (31)

Hence U ∈ H1(Rd+1) is a minimizer of IΛ(D),D subject to the constraint trU = 0 on Rd \ D.
To show that indeed U 6≡ 0, assume on the contrary that U ≡ 0. Note that the map T :
H1(Rd+1)→ Lp(D) is compact for any p < 2d

d−1
(with p <∞ if d = 1). Indeed, this follows by

the continous embedding H1(Rd+1)→ H1/2(Rd) and the compact embedding of H1/2(Rd) into
Lp(Rd). Hence, we have Un → 0 in Lq(D) for any q < 2d

d−1
(q <∞ for d = 1). In particular,

Ld({Un > 1} ∩D) 6
∫
D

| trUn(x)|q dx→ 0 for n→∞.

Note that due to (31), with V = 0, we �nd that∫
Rd+1

|∇Un(x)|2 dx→ 0 for n→∞. (32)
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By Lemma 3.4, using that by Lemma 3.1 and Corollary 3.3 the functions Un satisfy the as-
sumptions of this Lemma, we then �nd some C > 0 and p > 1 such that

Iλn,D(Un) = Iλn,D(0) +

∫
Rd+1

|∇Un(x)|2 dx− π

4
λ2
nLd({trUn > 1} ∩D)

> Iλn,D(0) +

∫
Rd+1

|∇Un(x)|2 dx− Cπ
4
λ2
n

(∫
Rd+1

|∇Un(x)|2 dx
)p

= Iλn,D(0) +

∫
Rd+1

|∇Un(x)|2 dx
(

1− Cπ
4
λ2
n

(∫
Rd+1

|∇Un(x)|2 dx
)p−1

)
.

By (32), p > 1, and since λn → Λ(D) for n→∞, it follows that there is m ∈ N such that

1− Cπ
4
λ2
m

(∫
Rd+1

|∇Um(x)|2 dx
)p−1

> 0.

But then Iλm,D(Um) > Iλm,D(0) in contradiction to (30). Hence we must have U 6≡ 0 as
claimed.

Corollary 3.6. The statements of Corollary 3.3 extends to the case λ = Λ(D).

Proof. This follows directly from Proposition 3.5 applied in the proofs for the existence.

Proof of Theorem 1.7. This follows from Lemma 2.1, Corollary 3.3, Proposition 3.5, Corollary
3.6 and [17, Theorem 1.4] (see also [33, Proposition 2.1] for the constant).

Proof of Proposition 1.8. Let λ > Λ(D1). Then there exists a nontrivial minimizer V of Iλ,D1

subject to the constraint trV = 0 on Rd \D1 and we have

Iλ,D2(V ) = Iλ,D1(V ) +
π

4
λ2Ld(D2 \D1)

< Iλ,D1(0) +
π

4
λ2Ld(D2 \D1) =

π

4
λ2Ld(D1) +

π

4
λ2Ld(D2 \D1) =

π

4
λ2Ld(D2) = Iλ,D2(0).

The strict inequality is due to Proposition 3.2. Hence, (27) holds and Proposition 3.2 �
in particular Claim (C1) in its proof � implies λ > Λ(D2). Since λ > Λ(D1) was chosen
arbitrarily, the �rst claim of Proposition 1.8 follows.

Regarding the homogeneity, it is enough to observe that if V (x) = U(x/s), then

{trV < 1} = s{trU < 1} ,

whence

Iλ/√s,sD(V ) =
1

s2

∫
Rd+1

|(∇U)(x/s)|2 dx+
π

4

λ2

s
Ld(s({trU < 1} ∩D))

= sd−1

∫
Rd+1

|∇U(x)|2 dx+
π

4
λ2sd−1Ld({trU < 1} ∩D) = sd−1Iλ,D(U) .

Then there is a one-to-one correspondence between nontrivial solutions of Problem 1.5 for the
couple (D,λ) and nontrivial solutions of the same problem for the couple (sD, s−1/2λ).
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Proof of Proposition 1.9. Let λ > Λ(D) and let U be a nontrivial solution of Problem 1.5.
Consider as explained in the proof of Lemma 2.5 U∗, which satis�es that trU∗ is the radial
symmetric rearrangement of trU such that it is nonincreasing in the radial direction. And note
that via the polarization inequality we have similarly

Iλ,B(U∗) 6 Iλ,D(U),

since the symmetric rearrangement of D is given by B and we have Ld({trU∗ < 1} ∩ B) =
Ld({trU < 1} ∩D). Since Iλ,B(0) = Iλ,D(0) we thus �nd

Iλ,B(U∗) 6 Iλ,B(0). (33)

If this inequality is strict, then the existence of a nontrivial minimizer V of Iλ,B subject to the
constraint trV = 0 on Rd \ B follows by Claim 1 in the proof of Proposition 3.2 and we may
conclude Λ(D) > Λ(B).
If we have equality in (33), then either U∗ is a nontrivial minimizer of Iλ,B subject to the
constraint trU∗ = 0 on Rd \B of Iλ,B, or we must have

inf
V ∈H1(Rd+1)

trV=0 on Rd \B

Iλ,B(V ) < Iλ,B(0)

and thus there exists also a nontrivial minimizer V of Iλ,B subject to the constraint trV = 0
on Rd \B. Thus also in the equality situation we may conclude Λ(D) > Λ(B).
It remains to show that Λ(D) = Λ(B) only holds if D = B up to a set of measure zero. For
this, assume D ⊂ Rd is any open nonempty bounded set with Λ := Λ(D) = Λ(B). Then we
�nd also with the above choice of U and U∗ for λ = Λ that

π

4
Λ2Ld(D) =

π

4
Λ2Ld(B) = IΛ,B(0) 6 IΛ,B(U∗) 6 IΛ,D(U) = IΛ,D(0) =

π

4
Λ2Ld(D).

Thus U∗ is a nontrivial minimizer of IΛ,B subject to the constraint trU∗ = 0 on Rd \ B and it
is uniquely determined. Moreover, we also have IΛ,B(U∗) = IΛ,D(U). By [13, Theorem 1.1] or
[32, Theorem 1.1.], it follows that we must have U = U∗ almost everywhere, but then D = B
almost everywhere and the claim follows.

Proof of Lemma 1.10. By scaling we have Λ(Bd
r (0)) = Λ(Bd

1(0))/
√
r, so we may assume that

r = 1 and we write B = Bd
1(0) for simplicity. Put λ = 2

√
d√
π

2(d+3)/2. By Proposition 3.2 is

is enough to show that there exists V ∈ H1(Rd+1) such that trV = 0 on Rd \ B satisfying
Iλ,B(V ) < π

4
λ2Ld(B). This is equivalent to∫

Rd+1

|∇V (x)|2 dx < π

4
λ2Ld({trV ≥ 1} ∩B). (34)

We begin with the case d 6= 2. Denote x = (x̃, xd+1), where x̃ = (x1, . . . , xd) ∈ Rd, xd+1 ∈ R.
Put ∇̃ =

(
∂
∂x1
, . . . , ∂

∂xd

)
. Let f ≡ 0 on Bc, f ≡ 1 on Bd

1/2(0), and f(x̃) = (2d−2−1)−1(|x̃|2−d−1)

for x̃ ∈ B \Bd
1/2(0). Note that∫

B\Bd
1/2

(0)

|∇̃f(x̃)|2 dx̃ =
(d− 2)2

(2d−2 − 1)2

∫
B\Bd

1/2
(0)

|x̃|2−2d dx̃ =
2(d− 2)2π

d
2 (2d − 1)

d(2d−2 − 1)2Γ(d
2
)
.
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Put V (x) = f(x̃)e−d|xd+1|. We have∫
Rd+1

|∇V (x)|2 dx =

∫
B×R

∣∣∣∣ ∂V∂xd+1

(x)

∣∣∣∣2 dx+

∫
B\Bd

1/2
(0)

|∇̃f(x̃)|2 dx̃
∫
R
e−2d|xd+1| dxd+1

<
2π

d
2

dΓ(d
2
)

∫ ∞
−∞

d2e−2dxd+1 dxd+1 +
2(d− 2)2π

d
2 (2d − 1)

d2(2d−2 − 1)2Γ(d
2
)
< 9

π
d
2

Γ(d
2
)
.

On the other hand, Ld({trV = 1} ∩ B) = Ld(B
d
1/2(0)) = πd/2

2d(d/2)Γ(d/2)
. Hence (34) holds, which

gives the upper bound for d 6= 3.
For d = 2 a similar calculation can be done with V (x̃, xd+1) = f(x̃)e−d|xd+1|, where f is similar
as above but with f(x̃) = − ln |x̃|/ ln(2) for 1/2 < |x̃| < 1 and we leave the details for the
reader.
For the lower bound, recall that by Proposition 3.5 and Corollary 3.6, it follows that there is
a continuous nontrivial minimizer VB of Iλ,B with trV = 0 on Rd \ B as long as λ > Λ(B).
Moreover, it follows that v = trVB is radially symmetric and nonincreasing in the radial
direction. In particular, there is ρv ∈ (0, 1) such that {x ∈ Rd : v(x) = 1} is given by
Kv = Bd

ρv(0). By Proposition 3.2 and Corollary 3.3, we have

π

4
Λ2(B)Ld(B) = Ad[v]1 +

π

4
Λ2(B)

(
Ld(B)− Ld(Kv)

)
,

so that

π

4
Λ2(B) >

Ad

Ld(Kv)
[v]1 >

2Ad

Ld(Kv)

∫
Kv

∫
Rd\B
|x− y|−d−1 dydx.

Since for x ∈ Kv ∩Bd
1/2(0) and y ∈ Rd \B we have |x− y| 6 3

2
|y| it thus follows that

π

4
Λ2(B) >

2Ad

Ld(Kv)

∫
Kv∩Bd1/2(0)

∫
Rd\B
|x− y|−d−1 dydx >

Ad

ρdv

2d+1

3d+1
min(ρdv, 2

−d)

∫
Rd\B
|y|−d−1 dy

>
4Adπ

d
2

3d+1Γ(d
2
)

∫ ∞
1

r−2 dr =
2Γ(d+1

2
)

3d+1
√
πΓ(d

2
)
>

√
d

3d+2

as claimed.

4 The interior Bernoulli problem for the spectral half Lapla-

cian

In the whole section we assume that d ≥ 2. Fix λ > 0 and an open, nonempty, bounded convex
set D ⊂ Rd. Recall the de�nition of F(D,λ) given in De�nition 1.1 for certains sets K ⊂ D
and associated functions v ∈ C(D ×R). Note that v ∈ F(D,λ) in particular satis�es v ≡ 0 on
∂D × R. We extend v on the whole Rd+1 by putting v ≡ 0 on (D × R)c.

Let Rd
+ = {z ∈ Rd : z1 > 0}, ed1 = (1, 0, . . . , 0) ∈ Rd.

Lemma 4.1. If K ∈ F(D,λ), then dist(K, ∂D) > 1
λ2
.

Proof. Let w ∈ ∂D such that dist(K, ∂D) = dist(w,K). Since vK(w, 0) = 0, by the boundary
conditions in (17), and vK is continuous up to ∂D, by (18) we have

1

dist(∂D,K)1/2
= lim

y→w

|vK(y, 0)− 1|
δ

1/2
K (y)

≤ sup
y∈D\K

|vK(y, 0)− 1|
δ

1/2
K (y)

≤ λ ,

which gives the desired estimate.
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Lemma 4.2. If G ⊆ F(D,λ) and K =
⋃
F∈G F , then K

∗ = conv(K) ∈ F(D,λ).

Proof. Notice �rst that K ⊆ D by the convexity of D; indeed, dist(K, ∂D) ≥ c
λ2

by the
convexity of D and Lemma 4.1.

For any F ∈ G let vF be the solution of (17) for F , and set

v(x) = sup
F∈G

vF (x).

Then {x : v(x) = 1} = K. Moreover, as it is well known that the supremum of a family of
harmonic functions is subharmonic, we have that v is subharmonic in (D × R) \ (K × {0}).
Finally, we notice that δK(y) = supF∈G δF (y), then for every y ∈ D \K we have

|v(y, 0)− 1|
δK(y)1/2

=
1− v(y, 0)

δK(y)1/2
= sup

F∈G

1− v(y, 0)

δF (y)1/2
≤ sup

F∈G

1− vF (y, 0)

δF (y)1/2
,

whence v clearly satis�es (18) for F ∈ F(D,λ) for every F ∈ G. Notice that we have by
de�nition 0 6 v 6 1. By standard arguments v ∈ C(Rd+1). Let vK denote the solution of (17)
associated to K. Then since v is subharmonic we have vK > v in D × R and in particular
v → 0 for |x| → ∞ since already vK has this property as mentioned in the introduction.

Now let v∗ be the quasi-concave envelope of v. We understand the quasi-concave envelope
of a function as in [23], that is the function v∗ whose superlevel sets are the convex hulls of the
corresponding superlevel sets of v. We recall that v∗ is explicitly de�ned as follows

v∗(x) = sup

{
min(v(x1), . . . , v(xd+2)) : x1, . . . , xd+2 ∈ Rd+1, µ ∈ Γd+2,

d+2∑
i=1

µixi = x

}
,

where Γk = {µ = (µ1, . . . , µk) : µi > 0,
∑k

i=1 µi = 1} for k > 2. Notice that v∗ > v and
{v∗ = 1} = K∗ by the very de�nition, and v∗ ∈ C(D × R) by [23, Lemma 2.2] using that we
have v → 0 for |x| → ∞ and thus also v∗ → 0 for |x| → ∞. Furthermore, Theorem 3.2 of [23]
implies that

∆v∗ > 0 in the viscosity sense in (D × R) \ (K∗ × {0}) . (35)

To see that v∗ indeed satis�es (18), let y ∈ D \K∗ (otherwise there is nothing to show) and �x
the unique xy ∈ ∂K∗ such that dist(y,K∗) = |y − xy|, which is possible, since K∗ is convex. If
xy ∈ ∂K, then we have immediately

|v∗(y, 0)− 1|
δ

1/2
K∗ (y)

=
1− v∗(y, 0)

|xy − y|1/2
6

1− v(y, 0)

|xy − y|1/2
6 λ.

If otherwise xy /∈ ∂K, there exist xy,1, . . . , xy,d ∈ K and µ1, . . . , µd ∈ [0, 1] such that

d∑
k=1

µk = 1 and
d∑

k=1

µkxy,k = xy.

Put yk = xy,k + y − xy. Then also
∑d

k=1 µkyk = y and thus

v∗(y, 0) > min{v(y1, 0), . . . , v(yd, 0)}.

Without loss, we may assume that the above minimum is attained at v(y1, 0) and then we have

|v∗(y, 0)− 1|
δ

1/2
K∗ (y)

=
1− v∗(y, 0)

|y − xy|1/2
6

1− v(y1, 0)

|y1 − xy,1|1/2
6
|v(y1, 0)− 1|
δ

1/2
K (y1)

6 λ
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and thus v∗ satis�es (18).
Now let us consider the solution vK∗ of (17) associated to K∗: thanks to (35) we have

vK∗ > v∗ in D and since vK∗ = v∗ = 1 on ∂K∗, we have that (18) for v∗ easily implies (18) for
vK∗ , which concludes the proof.

A straightforward corollary of the previous lemma is the following.

Corollary 4.3. Assume that F(D,λ) is not empty and de�ne

KD,λ = conv

 ⋃
K∈F(D,λ)

K


Then KD,λ ∈ F(D,λ).

For further convenience, let us denote as uD,λ the solution of (17) for KD,λ and notice that
uD,λ satis�es (18) by the above corollary.

Following the proof of Lemma 4.2, we also have the following.

Lemma 4.4. Let K ⊂ D be a nonempty compact set and assume there is v ∈ C(D × R)
satisfying in the viscosity sense

∆v > 0 in (D × R) \ (K × {0}),
v 6 0 on ∂D × R,
v 6 1 in K × {0},
lim sup|x|→∞ v(x) 6 0.

(36)

If v satis�es additionally supy∈D\K
|vK(y,0)−1|
δ
1/2
K (y)

≤ λ, then K ∈ F(D, λ).

Proof. Let v satisfy the stated assumptions and let vK be the harmonic solution to (17) with
this K . Then it is enough to note by the Maximum Principle we have vK > v in D \K and
thus

|vK(y, 0)− 1|
δ

1/2
K (y)

=
1− vK(y, 0)

δ
1/2
K (y)

6
1− v(y, 0)

δ
1/2
K (y)

6 λ.

Thus K ∈ F(D, λ) as claimed.

Lemma 4.5. Assume that F(D,λ) is not empty. Then ∂KD,λ is C1.

Proof. The proof is similar to the proof of Lemma 2.6 in [41]. Let us abbreviate K = KD,λ.
First, note that K has nonempty interior. If not, since K is convex, we get that uD,λ ≡ 0
on (D × R) \ (K × {0}), which gives contradiction with (18). Next, we prove that there is a
unique supporting plane at every point of ∂K. Put v = 1−uD,λ. Suppose that there is a point
x0 ∈ ∂K such that we have 2 supporting planes T1 and T2. By rotation and translation we may
assume that x0 is the origin and T1 = {x ∈ Rd : x1 + εx2 = 0}, T2 = {x ∈ Rd : x1 − εx2 = 0},
K ⊂ {x ∈ Rd : x1 + εx2 < 0} ∩ {x ∈ Rd : x1 − εx2 < 0}, for some ε > 0. Now, for i = 1, 2, 3
de�ne Λi to be cones

Λi = {x ∈ Rd : x1 + εx2/i > 0} ∪ {x ∈ Rd : x1 − εx2/i > 0}.

Then Λ3 ⊂ Λ2 ⊂ Λ1 ⊂ Kc and 0 ∈ ∂K ∩ ∂Λ1. By [5, Theorem 3.2] there exists a function
w : Rd → [0,∞), which is continuous on Rd, positive and 1-harmonic (i.e. harmonic with
respect to (−∆)1/2) on Λ3, vanishes on Λc

3 and it is homogeneous of degree β > 0, that is
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w(x) = |x|βw(x/|x|) for any x ∈ Rd \ {0}. It is the Martin kernel for (−∆)1/2 with pole at
in�nity for Λ3. By Lemma 3.3 and Example 3.2 in [5] β < 1/2. Note that this implies

lim sup
y→0

w(y)

|y|1/2 ≥ lim
y→0

|y|βw(ed1)

|y|1/2 =∞. (37)

Now let W be the harmonic extension in Rd+1 of w, that is for x ∈ Rd we have W (x, 0) = w(x)
and for x ∈ Rd, y 6= 0 we have W (x, y) =

∫
Rd P (x − z, |y|)w(z) dz, where P is given by (11).

Choose δ > 0 such that Bd
2δ(0) ⊂ D. Let

S = {x ∈ Rd+1 : x2
1 + x2

2 < 2δ2/d, x2
3, . . . , x

2
d ∈ [0, δ2/d), xd+1 ∈ (−1, 1)},

S∗ = Λc
3 × {0}. By properties of w the function W is harmonic in S \ S∗. Clearly, v ≥ W = 0

on S∗. Obviously there exists a constant c > 0 such that cv ≥ W on ∂S ∩ (Λ2 × R). On the
other hand, by estimates of Poisson kernels (see e.g. [42]) there exist constants c1 > 0, c2 > 0
such that W (x) ≤ c1|xd+1| for x ∈ ∂S × (Λc

2 × R) and v(x) ≥ c2|xd+1| for x ∈ ∂S × (Λc
2 × R).

Hence there exists c3 > 0 such that c3v ≥ W on ∂(S \ S∗) = ∂S ∪ S∗. By the comparison
principle c3v ≥ W on S \ S∗. Using this and (37) we get

lim sup
y→0

|uD,λ(y, 0)− 1|
|y|1/2 ≥ lim sup

y→0

v(y)

|y|1/2 ≥ lim sup
y→0

w(y)

c3|y|1/2
=∞,

which gives a contradiction. So, there is a unique supporting plane at every point x ∈ ∂K.
The justi�cation that these planes change continuously is the same as in the proof of Lemma
2.6 in [41].

For any nonzero vector a ∈ Rd and any ϕ : D → R denote

∂1/2
a ϕ(θ) = lim

t→0+

ϕ(θ + ta)− ϕ(θ)√
t

Let ν(θ) denote the unit exterior normal vector of ∂KD,λ at θ ∈ ∂KD,λ. For x ∈ Rd put
ϕD,λ(x) = uD,λ(x, 0).

For any r > 0 de�ne

vr(x) =
1− uD,λ(rx)

r1/2
. (38)

Lemma 4.6. Let U ⊂ Rd+1 be a compact set. There exists c = c(U,D, λ) > 0 such that for
su�ciently small r ∈ (0, 1] and all x = (x̃, xd+1) ∈ U with x̃ ∈ Rd, xd+1 ∈ R \ {0} we have∣∣∣∣vr(x)−

∫
Rd
P (x̃− y, |xd+1|)vr(y, 0) dy

∣∣∣∣ ≤ cr1/2|xd+1|.

Proof. Assume that r ∈ (0, 1]. Let x0 be a point on ∂KD,λ. We may assume that the origin is
at x0. Let a = dist(0, ∂D). By Lemma 4.1 a > 0. Let S ⊂ Bd

1(0) × (0, 1) be an open, convex
set with C2 boundary such that

(Bd
1/2(0)× {0}) ∪ (Bd

1/2(0))× {1}) ∪ (∂Bd
1(0)× [1/4, 3/4]) ⊂ ∂S

and ∂S ∩ (Rd × {0}) = Bd
1/2(0) × {0}. For t > 0 put St = {tx : x ∈ S}. Note that vr is

harmonic on Bd
a/r(0)× (0, a/r). Hence it is harmonic on Sa/r.
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For any open set W ⊂ Rd+1 with C2 boundary, x ∈ W , y ∈ ∂W let PW (x, y) be the
Poisson kernel of W at x. By well known estimates of Poisson kernels (see e.g. [42]) PS(x, y) ≤
c dist(x, ∂S)|x− y|−d−1 for any x ∈ S, y ∈ ∂S. Hence, for any x ∈ Sa/r, y ∈ ∂Sa/r we have

PSa/r(x, y) =
(r
a

)d
PS

(xr
a
,
yr

a

)
≤ cxd+1

|x− y|d+1
.

Let S∗a/r = Bd
a/(2r)(0)× {0}. By the de�nition of S we know that S∗a/r ⊂ ∂Sa/r. For su�ciently

small r and any x ∈ U , y ∈ ∂Sa/r \ S∗a/r we have |x − y| ≥ a/(4r). Let σa/r be the surface

measure on ∂Sa/r. It follows that for su�ciently small r, x = (x̃, xd+1) ∈ U with xd+1 > 0 we
have

vr(x) =

∫
∂Sa/r

PSa/r(x, y)vr(y) dσa/r(y) =

∫
S∗
a/r

+

∫
∂Sa/r\S∗a/r

The last integral is bounded from above by∫
∂Sa/r\S∗a/r

cxd+1r
−1/2

|x− y|d+1
dσa/r(y) ≤ cxd+1r

−1/2(4r/a)d+1σa/r(∂Sa/r \ S∗a/r) ≤ ca−1xd+1r
1/2. (39)

Hence, ∣∣∣∣∣vr(x)−
∫
S∗
a/r

PSa/r(x, y)vr(y) dσa/r(y)

∣∣∣∣∣ ≤ ca−1xd+1r
1/2. (40)

On the other hand we have∣∣∣∣∣
∫
Bd
a/(2r)

(0)

P (x̃− y, xd+1)vr(y, 0) dy −
∫
S∗
a/r

PSa/r(x, y)vr(y) dσa/r(y)

∣∣∣∣∣
=

∫
∂Sa/r\S∗a/r

PSa/r(x, y)

∫
Bd
a/(2r)

(0)

P (ỹ − z, yd+1)vr(z, 0) dz dσa/r(y)

≤
∫
∂Sa/r\S∗a/r

PSa/r(x, y)r−1/2 dσa/r(y)

≤ ca−1xd+1r
1/2, (41)

where in the last inequality we used (39). We used also the notation y = (ỹ, yd+1).
We also have∫

Rd
P (x̃− y, xd+1)vr(y, 0) dy −

∫
Bd
a/(2r)

(0)

P (x̃− y, xd+1)vr(y, 0) dy ≤ ca−1r1/2xd+1.

Using this, (40) and (41) we obtain the assertion of the lemma.

For any x = (x1, . . . , xd) ∈ Rd put

ψ(x) =

{
x

1/2
1 , for x1 > 0,

0, for x1 ≤ 0.

Let Ψ be the harmonic extension in Rd+1 of ψ, that is, for x ∈ Rd we have Ψ(x, 0) = ψ(x) and
for x ∈ Rd, y 6= 0 we have Ψ(x, y) =

∫
Rd P (x− z, |y|)ψ(z) dz. The explicit formula of Ψ is well

known see e.g. [26, (1.3)], however we will not use it in our paper.
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Lemma 4.7. Assume that F(D,λ) is not empty and let x0 be a point on ∂KD,λ. Assume
that the origin is at x0 and that the exterior normal to ∂KD,λ at x0 is directed by the �rst
coordinate vector. Let rj be any decreasing sequence converging to 0. Then there exists β ≥ 0
and a subsequence also denoted by rj such that vrj converges uniformly on any compact subset
of Rd+1 and pointwise on all of Rd+1 to βΨ.

Proof. For any j and x ∈ Rd we have

vrj(x, 0) =
1− uD,λ(rjx, 0)

r
1/2
j

≤
λr

1/2
j |x|1/2

r
1/2
j

= λ|x|1/2. (42)

Denote Rd
− = {x ∈ Rd : x1 < 0}. Let U ⊂ Rd be a convex, compact set such that 0 ∈ U .

Let J0 be such that for any j ≥ J0 we have 4U ⊂ r−1
j D and for any x ∈ U ∩ Rd

+ we have

dist(x, ∂(r−1
j D ∩ Rd

+)) = dist(x, ∂Rd
+) = x1. Now, we will show that the family {vrj(x, 0)}j≥J0

is uniformly equicontinuous on U . Since U is compact it is enough to show that this family is
equicontinuous at each x ∈ U .

First we show it for x ∈ U ∩ Rd
+. Note that for j ≥ J0 functions vrj are harmonic in

(r−1
j D ∩ Rd

+)× (0,∞). Hence for j ≥ J0 and x ∈ U ∩ Rd
+ we have

|∇vrj(x, 0)| ≤ (d+ 1)
vrj(x, 0)

dist(x, ∂(r−1
j D ∩ Rd

+))
≤ λ|x|1/2

x1

.

Therefore, {vrj(x, 0)}j≥J0 is equicontinuous at each x ∈ U ∩ Rd
+.

Let x ∈ Rd
−. Then there exists J1 ≥ J0 (J1 depends on x) such that for any j ≥ J1 we have

x ∈ int(r−1
j KD,λ) so vrj(y, 0) = 1 for y in some ball in Rd with centre at x. Hence {vrj(x, 0)}j≥J0

is equicontinuous at each x ∈ U ∩ Rd
−.

For x = 0 and y ∈ U we have |vrj(x, 0)− vrj(y, 0)|/|x− y|1/2 = vrj(y, 0)/|y|1/2 ≤ λ.
Now, let us consider the case when x ∈ U ∩ ∂Rd

+, x 6= 0. For y ∈ Rd we put y = (y1, y∗),
where y1 ∈ R, y∗ ∈ Rd−1. For any r > 0 let Wr = {y = (y1, y∗) : |y1| ≤ r, |y∗| ≤ r}. By
Lemma 4.5 ∂KD,λ is locally a graph of a C1 function. More precisely, there exists R > 0 and
f : Bd−1

R (0)→ (−∞, 0] such that

∂KD,λ ∩WR = {y = (y1, y∗) ∈ Wr : y1 = f(y∗) }

and limy∗→0 f(y∗)/|y∗| = 0. Note that there exists J2 ≥ J0 such that if j ≥ J2 and x ∈ U then
|rjx∗| ≤ R. For x ∈ U ∩ ∂Rd

+, x 6= 0 and j ≥ J2 we have

vrj(x, 0) =
1− uD,λ(rjx, 0)

r
1/2
j

≤ λ dist1/2(rjx,KD,λ)

r
1/2
j

≤ λ|f(rjx∗)|1/2

r
1/2
j

.

Note that limj→∞ |f(rjx∗)|1/2/r1/2
j = 0. Similarly, for y ∈ U and j ≥ J2 we have

vrj(y, 0) =
1− uD,λ(rjy, 0)

r
1/2
j

≤ λ dist1/2(rjy,KD,λ)

r
1/2
j

≤ λ(|f(rjy∗)|+ rj|y1|)1/2

r
1/2
j

≤ λ|f(rjy∗)|1/2

r
1/2
j

+λ|y1|1/2.

Therefore, {vrj(x, 0)}j≥J0 is equicontinuous at each x ∈ U ∩ ∂Rd
+.

So �nally, {vrj(x, 0)}j≥J0 is uniformly equicontinuous and uniformly bounded on U . Since
0 ∈ U ⊂ Rd was an arbitrary compact, convex set there is a subsequence of {vrj(x, 0)} also
denoted by {vrj(x, 0)} which converges uniformly on any bounded subset of Rd and pointwise

on all of Rd to a continuous function v0(x, 0). Clearly, 0 ≤ v0(x, 0) ≤ c|x|1/2.
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For x ∈ Rd, y 6= 0 let us de�ne

v0(x, y) =

∫
Rd
P (x− z, |y|)v0(z, 0) dz. (43)

Note that v0 is continuous on Rd+1. By Lemma 4.6 {vrj} converges uniformly on any bounded
subset of Rd+1 and pointwise on all of Rd+1 to v0.

Note that v0 is harmonic on Rd
+×R so is C∞ on Rd

+×R. We also have v0(x,−y) = v0(x, y)
for any x ∈ Rd, y > 0 so

∂v0

∂xd+1

(x, 0) = 0, for x ∈ Rd
+. (44)

For any x ∈ Rd put ϕ0(x) = v0(x, 0). By (43) and (44) ϕ0 is 1/2-harmonic on Rd
+ (see e.g.

[18]). We also have ϕ0 ≡ 0 on Rd
−. By [9, Theorem 4] and [5, Theorem 3.2 and Example 3.2]

we get ϕ0 ≡ βψ on Rd for some β ≥ 0.

Recall that ed1 = (1, 0, . . . , 0) ∈ Rd. Let j : Rd → [0, 1] be a continuous function on Rd such

that j ≡ 1 on Bd
1(−ed1), (−∆)1/2j ≡ 0 on (Bd

1(−ed1))c and lim|x|→∞ j(x) = 0. For x ∈ Rd de�ne
q1(x) = 1− j(x). Let Q1 be a harmonic extension of q1 on Rd+1. For y ∈ (Bd

1(0))c de�ne

I(y) =
Γ((d− 1)/2)

2π1/2Γ(d/2)

1

|y|d−2

∫ 1/(|y|2−1)

0

(1− (|y|2 − 1)b)(d−2)/2

b1/2(1 + b)
db.

By Appendix in [45] (cf. also (3.3), (3.6) in [43]) we have

I(ed1) =
Γ((d− 1)/2)

2π1/2Γ(d/2)

∫ ∞
0

1

b1/2(1 + b)
db =

π1/2Γ((d− 1)/2)

2Γ(d/2)

and for y ∈ (Bd
1(−ed1))c

j(y) =
I(y + ed1)

I(ed1)
. (45)

Lemma 4.8. We have

∂
1/2

ed1
q1(0) = lim

t→0+

q1(ted1)√
t

= C0 :=
2
√

2Γ(d
2
)√

πΓ(d−1
2

)
.

Proof. First note that with x = ted1 for t > 0 we have

q1(ted1) = 1− 2Γ(d
2
)√

πΓ(d−1
2

)
I((1 + t)ed1) = 1− (1 + t)2−d

π

∫ 1
t(2+t)

0

(1− (2 + t)tb)
d
2
−1

b1/2(1 + b)
db.

In the following, we write for functions f, g : (0, 1)→ (0,∞)

g(t) ∼ f(t) for t→ 0+, if lim
t→0

g(t)

f(t)
= 1.

With this notation and a change of variable we �nd for t→ 0+

q1(ted1)√
t

=
1√
t

(
1− (1 + t)2−d(2 + t)1/2

π

∫ 1
t

0

(1− tb) d2−1

b1/2((2 + t) + b)
db

)

∼ 1√
t

(
1−
√

2

π

∫ 1
t

0

(1− tb) d2−1

b1/2(2 + t+ b)
db

)
,
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where we have used that

lim
t→0+

(
(1 + t)2−d(2 + t)1/2 −

√
2

π
√
t

∫ 1
t

0

(1− tb) d2−1

b1/2((2 + t) + b)
db

)

=
1

π

∫ ∞
0

1

b1/2(2 + b)
db lim

t→0+

√
t
(1 + t)2−d(2 + t)1/2 −

√
2

t
= 0.

Using moreover that

1 =

√
2

π

∫ ∞
0

1

b1/2(2 + b)
db = lim

t→0+

√
2

π

∫ ∞
0

1

b1/2(2 + t+ b)
db

and

lim
t→0+

1√
t

(
1−
√

2

π

∫ ∞
0

1

b1/2(2 + t+ b)
db

)
=

√
2

π
lim
t→0+

∫ ∞
0

√
t

b1/2

1
2+b
− 1

2+t+b

t
db

=

√
2

π
lim
t→0+

√
t

∫ ∞
0

1

b1/2(2 + b)2
db = 0,

it follows that we have

q1(ted1)√
t
∼
√

2

π
√
t

(∫ ∞
1/t

1

b1/2(2 + t+ b)
db+

∫ 1
t

0

1− (1− tb) d2−1

b1/2(2 + t+ b)
db

)
for t→ 0+.

For the �rst integral we have the limit

lim
t→0+

1√
t

∫ ∞
1/t

1

b1/2(2 + t+ b)
db = lim

t→0+

∫ ∞
1

1

s1/2(2t+ t2 + s)
ds = 2. (46)

If d = 2, then the second integrals vanishes and thus limt→0+ q1(te2
1)/
√
t = 2

√
2/π.

If d > 2, then

lim
t→0+

1√
t

∫ 1
t

0

1− (1− tb) d2−1

b1/2(2 + t+ b)
db = lim

t→0+

∫ 1

0

1− (1− s) d2−1

s1/2(2t+ t2 + s)
ds

=

∫ 1

0

1− (1− s) d2−1

s3/2
ds

=
−2(1− (1− s) d2−1)

s1/2

∣∣∣∣∣
1

0

+ (d− 2)

∫ 1

0

(1− s) d2−2s−
1
2 ds

= −2 +
(d− 2)Γ(d

2
− 1)
√
π

Γ(d−1
2

)
= −2 +

2
√
πΓ(d

2
)

Γ(d−1
2

)
.

And thus, with (46) the claim follows also for d > 2.

Lemma 4.9. It holds

Q1(y, 0) 6 C0 dist(y,Bd
1(−ed1))1/2 =

2
√

2Γ(d
2
)√

πΓ(d−1
2

)
dist(y,Bd

1(−ed1))1/2 for y ∈ Rd. (47)
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Proof. Recall that Q1 is the harmonic extension of q1 in Rd+1, where q1 = 0 on Bd
1(−ed1) and,

for y ∈ (Bd
1(−ed1))c, it is given by

q1(y) = 1− j(y) = 1− |y + ed1|2−d
π

∫ 1

|y+ed1 |
2−1

0

(1− (|y + ed1|2 − 1)b)
d−2
2

b1/2(1 + b)
db. (48)

With x = y + ed1 it is thus enough to show that for |x| > 1 we have

2
√

2Γ(d
2
)√

πΓ(d−1
2

)
(|x| − 1)1/2 > 1− |x|

2−d

π

∫ 1
|x|2−1

0

(1− (|x|2 − 1)b)
d−2
2

b1/2(1 + b)
db

= 1− |x|
2−d(|x|2 − 1)1/2

π

∫ 1

0

(1− τ)
d−2
2

τ 1/2(|x|2 − 1 + τ)
dτ.

(49)

The case d = 2: In this case (49) reads

2
√

2

π
(|x| − 1)1/2 > 1−

√
|x|2 − 1

π

∫ 1

0

1

τ 1/2(|x|2 − 1 + τ)
dτ = 1− 2

π
arctan(

1√
|x|2 − 1

),

or, equivalently, with a = |x|,

f(a) :=
√

2(a− 1) + arctan(
1√

a2 − 1
)− π

2
> 0 for a > 1.

Note that the function f can be extended continuously at 1 with f(1) = 0 and

f ′(a) =
1√

2(a− 1)
− 1

a
√
a2 − 1

=
1√
a− 1

( 1√
2
− 1

a
√
a+ 1

)
> 0 for a > 1.

This shows the claim for d = 2.
The case d > 3: Denote

f : (1,∞)→ R, f(a) =
2
√

2Γ(d
2
)√

πΓ(d−1
2

)
(a− 1)1/2 − 1 +

a2−d

π

∫ 1
a2−1

0

(1− (a2 − 1)b)
d−2
2

b1/2(1 + b)
db.

Note that lima→1+ f(a) = −1 + 1
π

∫∞
0

db
b1/2(1+b)

= 0, so that it is enough to show that f ′ > 0. For

the following calculation recall∫ 1

0

tx−1(1− t)y−1 dt =
Γ(x)Γ(y)

Γ(x+ y)
.
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Then for a > 1 we have

f ′(a) =

√
2Γ(d

2
)√

πΓ(d−1
2

)
√
a− 1

− (d− 2)
a1−d

π

∫ 1
a2−1

0

(1− (a2 − 1)b)
d−2
2

b1/2(1 + b)
db

− (d− 2)
a3−d

π

∫ 1
a2−1

0

b1/2(1− (a2 − 1)b)
d−4
2

(1 + b)
db

>

√
2Γ(d

2
)√

πΓ(d−1
2

)
√
a− 1

− (d− 2)
√
a2 − 1

π

∫ 1

0

(1− t) d−2
2

t1/2(a2 − 1 + t)
dt

− d− 2

π
√
a2 − 1

∫ 1

0

t1/2(1− t) d−4
2

(a2 − 1 + t)
dt

=

√
2Γ(d

2
)√

πΓ(d−1
2

)
√
a− 1

− (d− 2)

π
√
a2 − 1

∫ 1

0

(1− t) d−4
2

t1/2(a2 − 1 + t)

(
(a2 − 1 + t)(1− t) + t2

)
dt

>

√
2Γ(d

2
)√

πΓ(d−1
2

)
√
a− 1

− (d− 2)

π
√
a2 − 1

√
πΓ(d

2
)

Γ(d+1
2

)
− (d− 2)

π
√
a2 − 1

∫ 1

0

t1/2(1− t) d−4
2 dt

=

√
2Γ(d

2
)√

πΓ(d−1
2

)
√
a− 1

− 2(d− 2)Γ(d
2
)

√
π(d− 1)Γ(d−1

2
)
√
a2 − 1

− (d− 2)

π
√
a2 − 1

√
πΓ(d

2
− 1)

2Γ(d+1
2

)

=
Γ(d

2
)√

πΓ(d−1
2

)
√
a− 1

(√
2− 2√

a+ 1

)
> 0,

This shows the claim.

For x = (x1, x2, . . . , xd, xd+1) ∈ Rd+1 or x = (x1, x2, . . . , xd) ∈ Rd we put x∗ = (x2, . . . , xd)
and |x∗| = (x2

2 + . . .+ x2
d)

1/2.

For x∗ ∈ Rd−1 with |x∗| < 1 let κ(x∗) ∈ (−1, 0] be such that (1 + κ(x∗))
2 + |x∗|2 = 1. (50)

By Lemma 4.8 and the fact that Rd 3 x→ q1(x− ed1) is radial we obtain

Lemma 4.10. For any ε > 0 there exists r ∈ (0, 1) such that for any (x1, x∗, xd+1) ∈ [−r, r]d+1

we have

Q1(x1, x∗, xd+1)

C0

≥ (1− ε)Ψ(x1 − κ(x∗), 0, xd+1) ≥ (1− ε)Ψ(x1, 0, xd+1).

In the sequel we use the following notation a ∨ b = max(a, b), a ∧ b = min(a, b).

Lemma 4.11. There exists C1 = C1(d) such that for any x ∈ Rd+1, with xd+1 > 0 we have∫
Rd+
P ((x1 − y1, x∗ − y∗), xd+1)y

1/2
1 dy1 dy∗ ≥

C1xd+1

((−x1) ∨ xd+1)1/2
. (51)

Proof. Put r = (−x1) ∨ xd+1. For x1 < 0 the left-hand side of (51) is bounded from below by

c

∫
Bdr ((0,x∗))∩Rd+

xd+1y
1/2
1

rd+1
dy1 dy∗ ≥

cxd+1

r1/2
.

For x1 ≥ 0 the left-hand side of (51) is bounded from below by

c

∫
Bdr ((x1,x∗))∩Rd+

xd+1y
1/2
1

rd+1
dy1 dy∗ ≥

cxd+1

r1/2
.

30



Lemma 4.12. There exists C2 = C2(d) such that for any R > 0, |x1| ≤ R/4, |x∗| ≤ R/4,
xd+1 ∈ (0, R/4] we have∫

(BdR(0))c
P ((x1 − y1, x∗ − y∗), xd+1)|y|1/2 dy1 dy∗ ≤

C2xd+1

R1/2
. (52)

Proof. The left-hand side of (52) is bounded from above by

c

∫
(BdR(0))c

xd+1|y|1/2
|y|d+1

dy ≤ cxd+1

R1/2
.

Lemma 4.13. There exists C3 = C3(d) such that for any x ∈ Rd+1 with x1 < 0 and xd+1 ∈
(0, |x1|] we have ∫

(Bd|x1|/2
(x))c

P ((x1 − y1, x∗ − y∗), xd+1) dy1 dy∗ ≤
C3xd+1

|x1|
. (53)

Proof. The left-hand side of (53) is bounded from above by

c

∫
(Bd|x1|/2

(x))c

xd+1

|y − x|d+1
dy ≤ cxd+1

|x1|
.

The proof of next lemma is using ideas from the proof of Theorem 2.1 in [41].

Lemma 4.14. Assume that F(D,λ) is not empty. Then for any θ ∈ ∂KD,λ we have ∂
1/2
ν(θ)ϕD,λ(θ) =

−λ.

Proof. Assume, for a contradiction, that there exists a point θ ∈ ∂KD,λ such that ∂
1/2
ν(θ)ϕD,λ(θ)

does not exist or it exists but ∂
1/2
ν(θ)ϕD,λ(θ) 6= −λ. Then lim supt→0+(ϕD,λ(θ+ tν(θ))− 1)/t1/2 =

−β for some 0 ≤ β < λ. Assume that the origin is at θ and that the exterior normal to
∂KD,λ at θ is directed by the �rst coordinate vector ed1. Then there exist a decreasing sequence

rj tending to 0 such that rj ∈ (0, 1] for any j and limj→∞(1 − ϕD,λ(rjed1))/r
1/2
j = β For any

r > 0 let vr be de�ned by (38). By Lemma 4.7 there exists a decreasing subsequence of rj also
denoted by rj such that the sequence vrj converges uniformly on any compact subset of Rd+1

and pointwise on all of Rd+1 to βΨ.
For any δ1 ∈ (0, 1/16) put R(δ1) = (1 − (1 − 4δ1)2)1/2 = (8δ1 − 16δ2

1)1/2 and note that

R(δ1) ∈ (
√

7δ1,
√

7
4

). Let δ1 ∈ (0, 1/16) and N1 ≥ 4 be such that R(δ1) ≥ 2N1δ1. Let N2, N3 ≥
4R(δ1)/δ1 be such that N2δ1, N3δ1 ≤ 3/4. Note that thus N2, N3 > N1. We de�ne a small box

W1 = {(x1, x∗, xd+1) ∈ Rd+1 : x1 ∈ [−N1δ1, N1δ1], |x∗| ≤ R(δ1), xd+1 ∈ [−N1δ1, N1δ1]}

and a large box

W2 = {(x1, x∗, xd+1) ∈ Rd+1 : x1 ∈ [−N2δ1, N2δ1], |x∗| ≤ N3δ1, xd+1 ∈ [−N2δ1, N2δ1]}

(see Figure 1).
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x2

x1

vrj = 0

Q̃ = 0
Q = 0

−4δ1

−N1δ1

N1δ1

−N2δ1

N2δ1

R(δ1) N3δ1−R(δ1)−N3δ1
δ2

Figure 1: Boxes W1, W2.

Choose ε1 > 0 such that β+ ε1 < λ1/2. Put Q = (β+ ε1)Q1/C0. Let ε2 ∈ (0, ε1]. We choose
δ1 small enough such that we may choose N1, N2, N3 so that

N2 ∧N3

N1

≥ 36λ2C2
2

C2
1ε

2
2

. (54)

By Lemma 4.10 one can choose δ1, N1, N2, N3 (satisfying the conditions mentioned above) such
that

Q(x1, x∗, xd+1) ≥ (β + ε2)Ψ(x1 − κ(x∗), 0, xd+1) ≥ (β + ε2)Ψ(x1, 0, xd+1)

for any (x1, x∗, xd+1) ∈ W2. From here on, N1, N2, N3, δ1, ε1, ε2 are �xed such that the above
inequalities holds.

Let δ2 ∈ (0, δ1) and Q̃(x1, x∗, xd+1) = Q(x1−δ2, x∗, xd+1). Note that (1−4δ1)2+(R(δ1))2 = 1
so Q(−4δ1, x∗, 0) = 0 for x∗ ∈ Rd−1 such that |x∗| = R(δ1). Hence for such x∗ we have
Q̃(−4δ1 + δ2, x∗, 0) = 0.

Let ε3 > 0. We choose j large enough so that

vrj(y) ≤ βΨ(y) + ε3, y ∈ W2, (55)

{x ∈ Rd : (x, 0) ∈ W2, vrj(x, 0) = 0} ⊂ {x ∈ Rd : x1 ∈ (−δ1, 0]}. (56)

By Lemma 4.6 there exists C4 = C4(D,λ) > 0 such that for su�ciently large j and x ∈ ∂W1

with xd+1 > 0 we have

vrj(x) ≤
∫

(KD,λ/rj)c
P (x1 − y1, x∗ − y∗, xd+1)vrj(y1, y∗, 0) dy1 dy∗ + C4r

1/2
j xd+1. (57)

We next show that under an appropriate choice of ε3 we get for su�ciently large j

Q̃(x) ≥ vrj(x) for x ∈ ∂W1 and Q̃(x) > vrj(x) for x ∈ ∂W1 such that vrj(x) > 0. (58)

We may assume that x ∈ ∂W1 satisfy xd+1 ≥ 0.
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Let us consider

U1 = {x ∈ ∂W1 : x1 ≥ −2δ1, |x∗| = R(δ1), xd+1 ≥ 0}.
Note that for x ∈ U1 we have κ(x∗) = −4δ1 (with κ de�ned as in (50)). Hence for (x1, x∗, xd+1) ∈
U1 we get

Q̃(x1, x∗, xd+1) = Q(x1 − δ2, x∗, xd+1)

≥ Q(x1 − δ1, x∗, xd+1)

≥ (β + ε2)Ψ(x1 − δ1 − κ(x∗), 0, xd+1)

= (β + ε2)Ψ(x1 + 3δ1, 0, xd+1) (59)

Now, ε3 must be chosen small enough so that for xd+1 ∈ [0, N1δ1] we have ε2Ψ(3δ1, 0, xd+1) > ε3.
Then, for x ∈ U1 (59) is bounded from below by

βΨ(x1, 0, xd+1) + ε2Ψ(3δ1, 0, xd+1) > βΨ(x1, x∗, xd+1) + ε3 ≥ vrj(x1, x∗, xd+1).

So Q̃ > vrj on U1.
Now, let us consider

U2 = {x ∈ ∂W1 : x1 = N1δ1, xd+1 ≥ 0}.
In order to show (58) for x ∈ U2 it is enough to choose ε3 and δ2 small enough. More precisely, we
choose ε3 smaller if necessary, so that for xd+1 ∈ [0, N1δ1] we have (ε2/2)Ψ((N1−1)δ1, 0, xd+1) >
ε3. Moreover, we choose δ2 smaller if necessary, so that for xd+1 ∈ [0, N1δ1] we have (β +
ε2/2)Ψ(N1δ1− δ2, 0, xd+1) ≥ βΨ(N1δ1, 0, xd+1). Clearly, this is possible and then for x ∈ U2 we
have

Q̃(x1, x∗, xd+1) = Q(N1δ1 − δ2, x∗, xd+1)

≥ (β + ε2)Ψ(N1δ1 − δ2, 0, xd+1)

≥ (β + ε2/2)Ψ(N1δ1 − δ2, 0, xd+1) + (ε2/2)Ψ((N1 − 1)δ1, 0, xd+1)

> βΨ(N1δ1, x∗, xd+1) + ε3

≥ vrj(x1, x∗, xd+1)

Now, put
U3 = {x ∈ ∂W1 : x1 ≤ −2δ1, xd+1 ∈ (0, |x1|]},

U4 = {x ∈ ∂W1 : x1 ≤ −2δ1, xd+1 ∈ (|x1|, N1δ1)},
U5 = {x ∈ ∂W1 : xd+1 = N1δ1},

U6 = {x ∈ ∂W1 : x1 ≤ −2δ1, xd+1 = 0}.
Next, by making δ2 even smaller if necessary, for any x ∈ U3 ∪ U4 ∪ U5 and y ∈ Rd

+ we have

P (x1 − y1 − δ2, x∗ − y∗, xd+1)

P (x1 − y1, x∗ − y∗, xd+1)
>
β + ε2/2

β + ε2

Using this we get for x ∈ U3 ∪ U4 ∪ U5

Q̃(x1, x∗, xd+1) = Q(x1 − δ2, x∗, xd+1)

≥ (β + ε2)Ψ(x1 − δ2, 0, xd+1)

= (β + ε2)

∫
Rd+
P (x1 − y1 − δ2, x∗ − y∗, xd+1)y

1/2
1 dy1 dy∗

> (β + ε2/2)

∫
Rd+
P (x1 − y1, x∗ − y∗, xd+1)y

1/2
1 dy1 dy∗

= I.
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For x ∈ U3 put W3 = (Bd
|x1|/2(x))c and for x ∈ U4 ∪ U5 put W3 = Rd. Note that by (56) for

x = (x1, x∗) satisfying x1 < −2δ1 and su�ciently large j we have vrj(y, 0) = 0 for y ∈ Bd
|x1|/2(x).

Using this, (55), (57), and (42) for su�ciently large j and x ∈ U3 ∪ U4 ∪ U5 we get

vrj(x1, x∗, xd+1) ≤ II + III + IV + V,

where

II = β

∫
Rd+∩W2

P (x1 − y1, x∗ − y∗, xd+1)y
1/2
1 dy1 dy∗,

III = ε3

∫
W3

P (x1 − y1, x∗ − y∗, xd+1) dy1 dy∗,

IV = λ

∫
(KD,λ/rj)c\W2

P (x1 − y1, x∗ − y∗, xd+1)|y|1/2 dy1 dy∗

and V = C4r
1/2
j xd+1.

We next show that for su�ciently large j and x ∈ U3 ∪ U4 ∪ U5 we have

I− II ≥ III + IV + V. (60)

For x ∈ U3 ∪ U4 ∪ U5 by Lemma 4.11 we get

I− II ≥ ε2

2

∫
Rd+
P (x1 − y1, x∗ − y∗, xd+1)y

1/2
1 dy1 dy∗ ≥

C1ε2xd+1

2((−x1) ∨ xd+1)1/2
.

Next, for x ∈ U3 by Lemma 4.13 we get III ≤ ε3C3xd+1/((−x1)∨ xd+1). On the other hand for
x ∈ U4∪U5 we trivially have III ≤ ε3 ≤ ε3xd+1/((−x1)∨xd+1). So for x ∈ U3∪U4∪U5 we have

III ≤ ε3(C3 ∨ 1)xd+1

(−x1) ∨ xd+1

≤ ε3(C3 ∨ 1)xd+1

((−x1) ∨ xd+1)1/2(2δ1)1/2
.

For x ∈ U3 ∪ U4 ∪ U5 by Lemma 4.12 we get

IV ≤ λC2xd+1

(N2 ∧N3)1/2δ
1/2
1

.

Choosing ε3 smaller, if necessary, we obtain for j big enough

1

3
(I− II) ≥ C3ε2xd+1

6((−x1) ∨ xd+1)1/2
≥ ε3(C3 ∨ 1)xd+1

((−x1) ∨ xd+1)1/2(2δ1)1/2
≥ III.

By taking j big enough, so that rj are small enough, we also get

1

3
(I− II) ≥ C1ε2xd+1

6N
1/2
1 δ

1/2
1

≥ C4r
1/2
j xd+1 = V.

By (54) we �nally also get

1

3
(I− II) ≥ C1ε2xd+1

6N
1/2
1 δ

1/2
1

≥ λC2xd+1

(N2 ∧N3)1/2δ
1/2
1

≥ IV.

This shows (60) for x ∈ U3 ∪ U4 ∪ U5.
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By (56) for x ∈ U6 with x1 ∈ (−4δ1 + δ2,−2δ1] we have Q̃(x) > 0 = vrj(x) and for x ∈ U6

with x1 ≤ −4δ1 + δ2 we have Q̃(x) = vrj(x) = 0, which �nishes the proof of (58).

For a �xed, su�ciently small ε3 and corresponding large enough j, so that the above in-
equalities are satis�ed, put

w̃ =

{
min(Q̃, vrj) inside W1,

vrj outside W1.

We have Q̃ ≥ vrj on ∂W1 so w̃ = vrj on ∂W1, which implies that w̃ is continuous on Rd+1.

We have w̃ = vrj = r
−1/2
j on ∂(r−1

j D) × R and 0 ≤ w̃ ≤ r
−1/2
j in Rd+1. Let K̃ = {x ∈

Rd : w̃(x, 0) = 0}. Clearly, K̃ = r−1
j KD,λ ∪ Bd

1((−1 + δ2)ed1). Note that vrj is harmonic on

((r−1
j D)×R) \ ((r−1

j KD,λ)× {0}) and Q̃ is harmonic on (Bd
1((−1 + δ2)ed1)× {0})c. By Lemma

4.9 Q̃(y, 0) ≤ (β + ε1)(dist(y,Bd
1((−1 + δ2)ed1)))1/2 for any y ∈ Rd. By similar arguments as

in the proof of Lemma 4.2 we have ∆w̃ ≤ 0 in ((r−1
j D) × R) \ (K̃ × {0}) in the viscosity

sense and w̃(y, 0) ≤ λ(dist(y, K̃))1/2 for y ∈ Rd. For any x ∈ Rd and y ∈ R we clearly have
w̃(x,−y) = w̃(x, y). Furthermore, for any x ∈ Rd and y2 > y1 ≥ 0 we have w̃(x, y2) ≥ w̃(x, y1).

Now put w(x) = 1− r1/2
j w̃(x/rj). Using the above properties of w̃ Lemma 4.4 implies that

Kw := {x ∈ Rd : w(·, 0) = 1} ∈ F(D,λ). On the other hand, KD,λ ⊂ Kw and KD,λ 6= Kw

because w(x, 0) = 1 for x in some ball in Rd with center 0. This gives contradiction with the
maximal property of uD,λ.

Proof of Theorem 1.12. Let uD,λ be the function de�ned in Lemma 4.3 and let ϕD,λ be the
function de�ned by ϕD,λ(x) = uD,λ(x, 0) for x ∈ D. We know that KD,λ ∈ F(D,λ) so for any
x ∈ D \KD,λ and y ≥ 0 we have uD,λ(x,−y) = uD,λ(x, y), which implies ∂uD,λ/∂xd+1(x, 0) = 0.
Using this and (17) with K = KD,λ we get that (−∆D)1/2ϕD,λ(x) = 0 for x ∈ D \ KD,λ. By

Lemma 4.5 the set {ϕD,λ = 1} = KD,λ is of class C
1. By Lemma 4.14 lim

t→0+

ϕD,λ(θ)−ϕD,λ(θ+tν(θ))√
t

=

λ for all θ ∈ ∂{x ∈ Rd : uD,λ(x, 0) = 1} = ∂KD,λ, where ν(θ) denotes the exterior normal of
KD,λ at θ. It follows that u = ϕD,λ satis�es Problem 1.3.

By the de�nition of KD,λ (see Lemma 4.3) the set {x ∈ Rd : uD,λ(x, 0) = 1} = KD,λ is
convex.

Proof of Proposition 1.13. Although it is almost straightforward, let us give a proof for the
sake of the reader. Let K ∈ F(D1, λ) and v1 be the related subsolution. Then let v2 be the
solution of (17) with D = D2. Then, by comparison, v2 > v1, whence

1− v2(y, 0)

δ
1/2
K (y)

≤ 1− v1(y, 0)

δ
1/2
K (y)

≤ λ for y ∈ D1 \K ,

while (see Lemma 4.1)

1− v2(y, 0)

δ
1/2
K (y)

≤ 1

δ
1/2
K (y)

≤ 1

dist(∂D1, K)1/2
≤ λ for y ∈ D2 \D1 .

Finally, since D2 \K = (D1 \K) ∪ (D2 \D1), we get v2 ∈ F(D2, λ) and this yields (i).

Now let K ∈ F(D,λ) and vK be the solution of (17). Let s > 0 and set

vs(x) = vK(x/s) for x ∈ sD × R .
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Then vs satis�es 
∆vs = 0 in ((sD)× R) \ ((sK)× {0})
vs = 0 on ∂(sD)× R
vs = 1 in (sK)× {0}

and
|1− vs(y, 0)|
δ

1/2
sK (y)

=
|1− vK(y/s, 0)|
s1/2δ

1/2
K (y/s)

,

whence sK ∈ F(sD, s−1/2λ). Viceversa, if K ′ ∈ F(sD, λ′) we can similarly see that s−1K ′ ∈
F(D, s1/2λ′). All together, we get sF(D,λ) = F(sD, s−1/2λ) for every λ > 0, which yields
(ii).

Proof of Proposition 1.15. As we have already said, the very de�nition of ΛS implies that
no solution exists if λ < ΛS(D). Now let λn be a sequence such that F(D,λn) 6= ∅ and
limn→+∞ λn = ΛS(D) and take any λ > ΛS(D). Then there exists ñ such that λñ < λ, whence
F(D,λñ) ⊆ F(D,λ) and a solution of Problem 1.14 exists by Theorem 1.12.
Finally, we have to prove that a solution of Problem 1.14 exists for λ = ΛS(D). First no-
tice that we can choose the minimizing sequence λn so that it is decreasing, then we have
F(D,λn+1) ⊆ F(D,λn), whence

KD,λn+1 ⊆ KD,λn . (61)

For simplicity, let us shorten KD,λn into Kn and set

K = lim
n→+∞

Kn =
∞⋂
n=1

Kn .

Furthermore, let us denote by vn the solution of
∆vn = 0 in (D × R) \ (Kn × {0})
vn = 0 on ∂D × R
vn = 1 in Kn × {0}
supy∈D\Kn

|vn(y, 0)− 1|
δ

1/2
Kn

(y)
= λn

(62)

given by Theorem 1.12. By (61) and comparison principle, we have

vn+1 6 vn in D .

Then vn is a bounded decreasing sequence of harmonic functions, hence converging (uniformly
in D) to a harmonic function vK which solves (17). Next we want to show that

sup
y∈D\K

|vK(y, 0)− 1|
δ

1/2
K (y)

6 ΛS(D) ,

or equivalently
1− vK(y, 0) 6 ΛS(D) δ

1/2
K (y) for y ∈ D \K . (63)

Now �x any point y ∈ D \K, then there exist n̄ such that y ∈ D \Kn for n > n̄ and, by (62),
it holds

1− vn(y, 0) 6 λn δ
1/2
Kn

(y) for n > n̄ .

Passing to the limit as n tends to ∞ and taking into account that limn→∞ δKn(y) = δK(y) we
get (63) as desired.
Then v is a subsolution of Problem 1.3 for ΛS(D), that is F(D,ΛS(D)) 6= ∅ and a solution
exists by Theorem 1.12.
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Proof of Proposition 1.16. By scaling for any r, s > 0 we have ΛS(Bd
r (0)) =

√
sΛS(Bd

s (0))/
√
r.

We will estimate ΛS(Bd
2(0)).

Let f : Rd → R be the function de�ned by f(x) = j(x − ed1), x ∈ Rd (where j is given
by (45)). Note that f is a radial function. Let F be the harmonic extension of f . For t > 0,
x ∈ Rd+1 put Vt(x) = tF (x) − (t − 1). Note that for any t > 0 Vt ≡ 1 on Bd

1(0) × {0}.
Fix t > 0 such that Vt ≡ 0 on ∂Bd

2(0) × {0}. We have Vt(2e
d
1, 0) = tf(2ed1) − t + 1 = 0, so

t = (1 − f(2ed1))−1. For any x̃ ∈ Bd
1(0) we have ∂

∂xd+1
F (x̃, 0) ≤ 0. Note that F is harmonic

on (Bd
1(0) × {0})c. Hence for any x̃ ∈ (Bd

1(0))c we have ∂
∂xd+1

F (x̃, 0) = 0. Then by standard

techniques we get

∂

∂xd+1

F (x̃, xd+1) =

∫
Rd
P ((x̃, xd+1), y)

[
∂

∂xd+1

F

]
(y, 0) dy ≤ 0,

for any x̃ ∈ Rd, xd+1 > 0. This gives ∂
∂xd+1

Vt(x̃, xd+1) ≤ 0 for any x̃ ∈ Rd, xd+1 > 0. Since

Vt ≡ 0 on ∂Bd
2(0)× {0} we get Vt(x̃, xd+1) ≤ 0 for any x̃ ∈ ∂Bd

2(0), xd+1 > 0. By symmetry we
get Vt ≤ 0 on ∂Bd

2(0)× R.
Note that x̃ → Vt(x̃, 0) is radial and radially nonincreasing. Hence for any xd+1 ∈ R

x̃ → Vt(x̃, xd+1) is radial and radially nonincreasing. For x ∈ Rd+1 put Ṽt(x) = Vt(x) when
Vt(x) > 0 and Ṽt(x) = 0 when Vt(x) ≤ 0. Put ṽt(x) = Ṽt(x, 0) for x ∈ Rd. For x ∈ Bd

2(0)

ṽt(x) = vt(x) = tf(x) − t + 1. Using this and Lemma 4.8 we get ∂
1/2

ed1
ṽt(e

d
1) = −tC0. Put

λ = tC0. Note that {x ∈ Rd : ṽt(x) = 1} ∈ F(Bd
2(0), λ) by Lemma 4.4 so ΛSB

d
2(0) ≤ λ. Hence

for any r > 0 we get ΛS(Bd
r (0)) =

√
2ΛS(Bd

2(0))/
√
r ≤
√

2tC0/
√
r.

5 The Brunn-Minkowski and Urysohn inequalities

Lemma 5.1. Let D0 ⊂ Rd and D1 ⊂ Rd be bounded nonempty convex open sets, s ∈ (0, 1) and
set Ds = (1− s)D0 + sD1. If F(D0, λ0) and F(D1, λ1) are not empty, then

Ks = (1− s)KD0,λ0 + sKD1,λ1 ∈ F(Ds,max{λ0, λ1}) .

Proof. Observe that Ks are compact, Ds are open, convex and Ks ⊆ Ds. For i = 0, 1 denote
vi = vDi,λi , Ki = KDi,λi . Then, let v

∗
s be the function whose superlevel sets are the Minkowski

combination of the corresponding superlevel sets of v0 and v1. More explicitly:

v∗s(x) = sup
{

min(v0(x0), v1(x1)) : x0 ∈ Rd+1, x1 ∈ Rd+1, (1− s)x0 + sx1 = x
}
.

Notice that

v∗s ∈ C(Rd+1) , 0 6 v∗s 6 1 , v∗s = 0 on Dc
s × Rand {v∗s = 1} = Ks × {0} . (64)

Moreover, since vi → 0 for |x| → ∞ for i = 0, 1, clearly also v∗s → 0 for |x| → ∞.
Furthermore, it holds

∆v∗s > 0 in the viscosity sense in (Ds × R) \ (Ks × {0}) , (65)

see for instance the proof of Theorem 1 in [24], in particular formula (38), or also [7] (in
particular formula (2.6) or Proposition 2.3, therein).

Now we want to show that v∗s satis�es (18). Let y ∈ Ds \Ks and �x the unique xs ∈ ∂Ks

such that
δKs(y) = dist(y,Ks) = |y − xs| ,
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which is possible, since Ks is convex. Then, by the properties of Minkowski addition of convex
sets, there exists x0 ∈ ∂K0 and x1 ∈ ∂K1 such that

(1− s)x0 + sx1 = xs and ν0(x0) = ν1(x1) = νs(xs) ,

where νi(xi) denotes the outer unit normal of Ki at xi, for i = 0, 1, s. Put yi = xi + y − xs for
i = 0, 1. Then, by the convexity of the involved sets, we have

δK0(y0) = |y0 − x0| = δK1(y1) = |y1 − x1| = δKs(y) = |y − xs| .
Furthermore,

(1− s)y0 + sy1 = y

and thus
v∗s(y, 0) > min{v0(y0, 0), v1(y1, 0)}.

Without loss of generality, we may assume that the above minimum is attained at v1(y1, 0) and
then we have

|v∗s(y, 0)− 1|
δ

1/2
Ks

(y)
=

1− v∗s(y, 0)

δ
1/2
Ks

(y)
6

1− v1(y1, 0)

δ
1/2
K1

(y1)
=
|v(y1, 0)− 1|
δ

1/2
K1

(y1)
6 λ1 6 max{λ0, λ1}

and thus v∗s satis�es (18).
Now let us consider the solution vKs of (17) associated to Ks: thanks to (65) we have

vKs > v∗s in Ds and since vKs = v∗s = 1 on ∂Ks, we have that (18) for v
∗
s easily implies (18) for

vKs , which concludes the proof.

Now we are ready to prove the Brunn-Minkowski inequality for ΛS.

Proof of Theorem 1.17. A straightforward consequence of the previous lemma is the following.

ΛS(Ds) 6 max{ΛS(D0), ΛS(D1)} , (66)

which takes to (19) thanks to a standard procedure based on the homogeneity of ΛS. We give
the proof for the sake of the reader.

Let D̃i = ΛS(Di)
2Di for i = 0, 1 and observe that (ii) of Proposition 1.13 yields

ΛS(D̃0) = ΛS(D̃1) = 1 .

Then, for every µ ∈ (0, 1), by (66) we have

ΛS(D̃µ) 6 1 , (67)

where
D̃µ = (1− µ)D̃0 + µD̃1 .

Now taking

µ =
sΛS(D1)−2

(1− s)ΛS(D0)−2 + sΛS(D1)−2
,

we have

D̃µ =
1

(1− s)ΛS(D0)−2 + sΛS(D1)−2
((1− s)D0 + sD1) .

Then (67) and (ii) of Proposition 1.13 give[
(1− s)ΛS(D0)−2 + sΛS(D1)−2

]1/2
ΛS ((1− s)D0 + sD1) 6 1 ,

which coincides with (19).

Proof of Corollary 1.18. The proof of the Urysohn inequality for the Bernoulli constant for the
spectral half Laplacian is based on a standard procedure, as described in the proof of Corollary
2.2 of [8] or in Section 6 of [49]. We leave the proof to the reader.
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6 Appendix

Proof of Lemma 2.4. In the following, c denotes a positive constant depending only on d, whose
value may change from line to line. The case d = 1 is simple and we omit it. In the following
let d > 2. Then, by translation into polar coordinates, denoting Sd := ∂B1(0), we have

[u]1 =

∫ ∞
0

∫ ∞
0

∫
Sd

∫
Sd

(g(r)− g(τ))2rd−1τ d−1

|rθ − τφ|d+1
dθ dφ dτdr

= c

∫ ∞
0

∫ ∞
0

(g(r)− g(τ))2rd−1τ d−1

∫ π

0

sin(t)d−2

(r2 + τ 2 − 2rτ cos(t))
d+1
2

dt dτdr.

Using the monotonicity of g, we hence have

[u]1 > ε2c

∫ t0

0

∫ ∞
t0

rd−1τ d−1

∫ π

0

sin(t)d−2

(r2 + τ 2 − 2rτ cos(t))
d+1
2

dt dτdr

= ε2td−1
0 c

∫ 1

0

∫ ∞
1

rd−1τ d−1

∫ π

0

sin(t)d−2

(r2 + τ 2 − 2rτ cos(t))
d+1
2

dt dτdr,

where in the last step we substituted r and τ with t0r and t0τ abusing slightly the notation.
The claim follows once we show∫ 1

0

∫ ∞
1

rd−1τ d−1

∫ π

0

sin(t)d−2

(r2 + τ 2 − 2rτ cos(t))
d+1
2

dt dτ dr =∞. (68)

Note here that we may write∫ π

0

sin(t)d−2

(r2 + τ 2 − 2rτ cos(t))
d+1
2

dt = r−d−1

∫ π

0

sin(t)d−2

(1 + γ2 − 2γ cos(t))
d+1
2

dt

with γ = τ
r
> 1. Note that we have∫ π

0

sin(t)d−2

(1 + γ2 − 2γ cos(t))
d+1
2

dt >
c

γd−2(γ2 − 1)2
. (69)

The proof of this inequality is postponed to the end of this proof. With (69) we �nd∫ 1

0

∫ ∞
1

∫ π

0

rd−1τ d−1 sin(t)d−2

(r2 + τ 2 − 2rτ cos(t))
d+1
2

dt dτ dr > c

∫ 1

0

∫ ∞
1

rd−3 τ(
( τ
r
)2 − 1

)2 dτ dr

= c

∫ 1

0

rd+1

1− r2
dr =∞,

which shows (68) and �nishes the proof.
To see (69), we perform the same nonlinear change of variable as in [14, Appendix (A.26)]

by putting
sin(t)√

1 + γ2 − 2γ cos(t)
=

sin(θ)

γ
. (70)

It follows by di�erentiating that

dt =

(
1− cos(θ)√

γ2 − sin2(θ)

)
dθ. (71)
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We also have cos2(θ) = (1−γ cos(t))2

γ2+1−2γ cos(t)
and γ2−sin2(θ) = γ2 (γ−cos(t))2

γ2+1−2γ cos(t)
. Hence

√
γ2 − sin2(θ)−

cos(θ) =
√
γ2 + 1− 2γ cos(t). Using this, (70) and (71) we then have

∫ π

0

sin(t)d−2

(1 + γ2 − 2γ cos(t))
d+1
2

dt

=

∫ π

0

sin(θ)d−2

γd−2(
√
γ2 − sin2(θ)− cos(θ))3

(
1− cos(θ)√

γ2 − sin2(θ)

)
dθ

=
1

γd−2(γ2 − 1)2

∫ π

0

sin(θ)d−2(γ2 − sin2(θ) + 2
√
γ2 − sin2(θ) cos(θ) + cos2(θ))√

γ2 − sin2(θ)
dθ

=
2

γd−2(γ2 − 1)2

(∫ π
2

0

sin(θ)d−2
√
γ2 − sin2(θ) dθ +

∫ π
2

0

sin(θ)d−2(1− sin2(θ))√
γ2 − sin2(θ)

dθ

)

using the symmetries of the integrals. It holds∫ π
2

0

sin(θ)d−2(γ2 − sin2(θ))
1
2 dθ =

1

2

∫ 1

0

ρ
d−3
2

(γ2 − ρ
1− ρ

) 1
2
dρ and similarly∫ π

2

0

sin(θ)d−2(1− sin2(θ))

(γ2 − sin2(θ))
1
2

dθ =
1

2

∫ 1

0

ρ
d−3
2

( 1− ρ
γ2 − ρ

) 1
2
dρ.

Hence, using γ > 1∫ π

0

sin(t)d−2

(1 + γ2 − 2γ cos(t))
d+1
2

dt =
1

γd−2(γ2 − 1)2

∫ 1

0

ρ
d−3
2

((γ2 − ρ
1− ρ

) 1
2

+
( 1− ρ
γ2 − ρ

) 1
2

)
dρ

>
1

γd−2(γ2 − 1)2

∫ 1

0

ρ
d−3
2 dρ =

c

γd−2(γ2 − 1)2
,

which shows (69).
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