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ABSTRACT. We study the stochastic differential equation dX; = A(X;_)dZ,
Xy = x, where Z; = (Zt(l),...,Zt(d))T and Zt(l),...,Zt(d) are independent one-
dimensional Lévy processes with characteristic exponents 1, ...,¥4. We assume
that each 1; satisfies a weak lower scaling condition WLSC(«, 0, C), a weak upper
scaling condition WUSC(8,1,C) (where 0 < a < B < 2) and some additional
regularity properties. We consider two mutually exclusive assumptions: either (i)
all ¥1, ..., 14 are the same and «, 8 are arbitrary, or (ii) not all ¢, ..., are the
same and o > (2/3)3. We also assume that the determinant of A(z) = (ai;(x))
is bounded away from zero, and a;;(z) are bounded and Lipschitz continuous. In
both cases (i) and (ii) we prove that for any fixed v € (0,a) N (0, 1] the semigroup
P; of the process X satisfies | P, f(x) — P, f(y)| < et~/ |z —y|?||f||o for arbitrary
bounded Borel function f. We also show the existence of a transition density of
the process X.

1. INTRODUCTION
We study the following stochastic differential equation
dX, = A(X,_)dZ,, X,=z¢€R% (1)
We make the following assumptions on a family of matrices A = (A(z),z € R?) and
a process Z = (Z;,t > 0).
Assumptions (A0). A(x) = (a;;(x)) is a d x d matrix for each z € R? (d € N,
d > 2). There are constants 7,712,173 > 0, such that for any z,y € RY, 4,5 €

(1,....d}

|aij(x)] < m, (2)
det(A(z)) > no, (3)
|laij(z) — aij(y)| < nsle —yl. (4)

For notational convenience we may and do assume that 7y, n3 > 1.

Assumptions (Z0). Z, = (z\",..., Z\)7T where Z\V, ..., Z'” are independent
one-dimensional Lévy processes (not necessarily identically distributed). For each
i € {1,...,d} the characteristic exponent 1); of the process Zt(l)

(&) = /R(l — cos(&x))vy(z) dx,

where v;(z) is the density of a symmetric, infinite Lévy measure (i.e. v; : R\ {0} —
[0,00), [g(@* AL)y(z)de < oo, [ vi(x)de = oo, vi(—z) = v;(x) for z € R\ {0}).
There exists 4 > 0 such that v; € C*(0,1,), v/(z) < 0 for x € (0,n4) and —v/(x)/x is
decreasing on (0,7,). v, satisfies a weak lower scaling condition WLSC(«, 0, C') and
a weak upper scaling condition WUSC(S, 1, C') for some constants 0 < o < 3 < 2,

C,C > 0 (the definitions of WLSC and WUSC are presented in Section 2).
1

is given by
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It is well known that under these assumptions SDE (1) has a unique strong solution
X, see e.g. [33, Theorem 34.7 and Corollary 35.3]. By [36, Corollary 3.3] X is a
Feller process.

In the paper we will consider two mutually exclusive assumptions:

Assumptions (Z1). The process Z satisfies assumptions (Z0). All ¢, ..., 9,4
are the same.

Assumptions (Z2). The process Z satisfies assumptions (Z0). Not all ¢, ..., 1,4
are the same. a > (2/3)5.

Put vo(x) = (r1(x),...,v4(z)). Let E* denote the expected value of the process
X starting from z and %,(R?) denote the set of all Borel bounded functions f :
R? — R. For any t > 0, z € R? and f € %,(R?) we put

P f(z) = E*f(X3). ()
The main result of this paper is the following theorem.

Theorem 1.1. Let A satisfy (A0), Z satisfy (Z1) or (Z2), X be the solution of (1)
and P; be given by (5). Then for any v € (0,a) N (0,1], 7 >0, t € (0,7], v,y € R?
and f € By(RY) we have

[Pif(x) = Pof ()] < et & = y|" [ f]oos (6)
where ¢ depends on v, T, o, ,C,C,d,n1, 02,3, N4, Vo-

This gives the strong Feller property of the semigroup P;. Note that the weaker
result namely the strong Feller property of the resolvent R, f(x) = fooo e P f(x) dt
(s > 0) follows from [38, Theorem 3.6]. Strong Feller property for SDEs driven by
additive cylindrical Lévy processes have been studied recently (see e.g. [34, 13]).

We also show the existence of a transition density of the process X.

Proposition 1.2. Let A satisfy (A0), Z satisfy (Z1) or (Z2) and X be the solution
of (1). Then the process X has a lower semi-continuous transition density function
p(t,z,y), p:(0,00) x REx RY — [0, 0o] with respect to the Lebesque measure on RY.

Recently, the existence of densities for stochastic differential equations driven by
Lévy processes have been studied in [15] (cf. also [12]). Our existence results and
the existence results from [15] have some intersection. However, their results do not
imply ours and our results do not imply theirs. Some more comments on this are in
the Remark 1.5.

One may ask about the boundedness of p(¢, z,y). It turns out that for some choices
of matrices A and processes Z (satisfying assumptions (A0) and (Z1) respectively)
and for some ¢ > 0 and z € R? we might have p(t,z,-) ¢ L>°(R?) (see Remarks 4.23
and 4.24 in [28]). Nevertheless we have the following regularity result.

Theorem 1.3. Let A satisfy (A0), Z satisfy (Z1) or (Z2), X be the solution of (1)
and P; be given by (5). Then for any v € (0,a/(d+ 8 —«a)), 7 > 0, t € (0,7],
z € R? and f € LY(RY) N L°(R?) we have

|Pof ()] < et B/ 710 117,
where ¢ depends on v, T,a, 3, C, 5, d, M1, M2, M3, M4, Vo-

Note that we have been able to show only lower semi-continuity of p(¢, x,y). In
fact, we believe that a stronger result is true.
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Conjecture 1.4. Let A satisfy (A0), Z satisfy (Z1) or (Z22) and X be the solution
of (1). Then the process X has a continuous transition density function p(t¢,x,y),
p: (0,00) x RY x R? — [0,00] with respect to the Lebesgue measure on R?. If
p(to, To, o) = oo for some ty > 0, xg,yo € R? then for all ¢t > 0, x € R? we have

p(ta xz, yO) = OQ.

The continuity should be understood here in the extended sense (as a function
with values in [0, 00]).

Estimates of the type [P f (2) =P, f(y)| < ¢ |z =y["[| flloo o1 [V B f ()] < cpill flp
(for p > 1) of semigroups of solutions of SDEs
dX, = A(X,)dZ, +b(X,)dt, X,=x€cR? (7)

driven by general Lévy processes Z with jumps have attracted a lot of attention
recently. Similarly, of great interest were Holder or gradient estimates of transi-
tion densities of the semigroups of the type |p(t,z,y) — p(t, z,y)| < crylz — 2|7,
|Vap(t,z,y)| < cy. A lot is known about such estimates when the driving process
Z has a non-degenerate diffusion part [42]. Another well studied case is when 7 is
a subordinated Brownian motion [40]. There are also results for pure-jump Lévy
processes in R? such that their Lévy measure satisfies v(dz) > clj,<,|2|74* for
some « € (0,2) and ¢,r > 0 [32]. The typical techniques are the coupling method,
the use of the Bismut-Elworthy-Li formula or the Levi (parametrix) method.

Much more demanding case is when the Lévy measure of the driving process Z
is singular. The above gradient type estimates have been studied for SDEs driven
by additive cylindrical Lévy processes (i.e. when A = I and b # 0 in (7)) [41].
The above Holder (or Lipschitz) type estimates for SDEs driven by processes Z
with singular Lévy measures were also studied in the case when matrices A(x) were
diagonal [27], [32]. The case when the Lévy measure of the driving process Z is
singular and matrices A(x) are not diagonal is much more difficult (heuristically it
corresponds to rotations of singular jumping measures). The first important step in
understanding this case was done in [28] in which it was assumed that the driving
process Z is a cylindrical a-stable process in R? with o € (0,1).

The proof of the main result Theorem 1.1 is based on ideas from [28]. Similarly
as in [28] we first truncate the Lévy measure of the process Z. Then, as in [28], we
construct the semigroup of the solution of (1), driven by the process with truncated
Lévy measure using the Levi method. Finally, we construct the semigroup of the
solution of (1), driven by the not truncated process, by (roughly speaking) adding
long jumps to the truncated process.

Nevertheless, there are big differences between this paper and [28]. First, in [28]
the generators of processes Z(*) are operators of order smaller than 1 and in this
paper they may be of order bigger than 1. This is much more difficult situation.
Secondly, in [28] the processes Zt(z) are stable processes and in this paper they are
quite general Lévy processes. The investigation of these processes is much more

complicated than stable processes (see Section 2). Thirdly, and most importantly,

)

in [28] all components Zt(i are identically distributed and in our paper we consider

the case in which Zt(i) have different distributions. From technical point of view, in
order to use Levi’s method, we have to apply generators of Z,@ to the density of
Z9 . When Z{” and Z" has different distributions this leads to major difficulties

in proofs (see e.g. proofs of Lemma 3.2, Corollary 4.7 and Proposition 4.9).
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It is worth mentioning that Levi’s method has been recently used to study gradient
estimates of heat kernels corresponding to various non-local, Lévy-type operators see
e.g. [9, 21, 17]. The coupling method was used in [37] to obtain gradient estimates
of semigroups of transition operators of Lévy processes satisfying some asymptotic
behaviour of their symbols. Let us also add that the properties of harmonic func-
tions corresponding to the solutions of (1), when the driving process Z is just the
cylindrical a-stable process were studied in [1], (see also [7] for more general results).

Now we exhibits some examples of processes for which assumptions (Z1) or (Z2)
are satisfied.

Example 1. Assume that for each i € {1,...,d} we have Zt(i) = Bg()i) where Bt(i)

is the one-dimensional Brownian motion and St(i) is a subordinator with an infinite
Lévy measure p and Laplace exponent . Assume also that Bt(l), cee Bt(d) ) St(l), e St(d)
are independent and for each ¢ € {1,...,d} we have ¢ € WLSC(«/2,0,C), ¢ €
WUSC(5/2,1,C) for some constants 0 < a < 8 < 2, C,C > 0. Then assumptions
(Z1) are satisfied.

In particular, this holds when Zt(l), e Zt(d) are independent and for each 7 €
{1,...,d} Zt(i) is a one-dimensional, symmetric a-stable process, where o € (0, 2).

Similarly, this holds when Zt(l), ce Zt(d) are independent and for each i € {1,...,d}
Zt(i) is a one-dimensional, relativistic a-stable process with ¢; (&) = (m** + |¢ |2)a/2—
m, where o € (0,2), m > 0 (cf. [35]).

Example 2. Assume that for each i € {1,...,d} we have Zt(i) = BS‘)“ where
t

Bt(i) is the one-dimensional Brownian motion and St(i) is a subordinator with an
infinite Lévy measure u; and Laplace exponent ¢; such that not all p,..., ¢, are
equal. Assume also that Bt(l)7 ce Bt(d), St(l), cee Slfd) are independent and for each
i € {1,...,d} we have p; € WLSC(/2,0,C), ¢; € WUSC(8/2,1,C) for some
constants 0 < a < 8 < 2, a > (2/3)3, C,C > 0. Then assumptions (Z2) are
satisfied.

In particular, let Z; = (Zt(l), - Zt(d))T be such that Zt(l), . Zt(d) are indepen-
dent and for each i € {1,...,d} Zt(z) is a one-dimensional, symmetric «;-stable
process (o; € (0,2) and they are not all equal). Put o = min(ay,...,aq) and
f = max(ay,...,aq). If > (2/3)p then assumptions (Q2) are satisfied. The SDE
(1) driven by such process Z is of great interest see e.g. [5], [6], [15, example (Z2)
on page 2|.

Example 3. Assume that for each i € {1, ..., d} the process Zt(i) is the pure-jump
symmetric Lévy process in R with the Lévy measure v(x) dz given by the formula

[ e for we (—1,1)\ {0},
v(w) = { 0 for |z| > 1,

where d,|z|717* is the Lévy density for the standard one-dimensional, symmetric

a-stable process, a € (0,2). Assume also that Zt(l), cee Zt(d) are independent. Then
assumptions (Z1) are satisfied. Clearly, Z is not a subordinated Brownian motion.

Remark 1.5. In [15] the following SDE
dX, = A(X, )dZ, +b(X,)dt, X,=z¢cR%



SDES DRIVEN BY LEVY PROCESSES 5

is studied, where A(z), b(x) are bounded, Holder continuous and Z is a Lévy process
in R? such that Z; has a density f; and there exist ay,...,aq € (0,2) for which we
have

limsuptl/ak/ |fi(z +exh) — fi(z)dz] < c|h], heR,ke{l,...,d}.
t—0+ R4

The main result in [15] states that there exists a density of X and that the den-
sity belongs to the appropriate anisotropic Besov space. This result holds if some
conditions on «y, ..., ay and on the Lévy measure of Z are satisfied (see [15, (2.8),
(2.9)]).

On one hand, the existence result in [15] holds for some processes Z, some ma-
trices A and nonzero drifts b which are not considered in our paper. On the
other hand, there are some processes Z for which our result holds and the re-
sult in [15] does not hold, because their conditions on «y, ..., aq are in some cases
more restrictive than our condition o > (2/3)5. Take for example the process
Zy = (Z, .., ZT such that Z1,..., Z\” are independent and for each i €
{1,...,d} Zt(l) is a one-dimensional, symmetric «;-stable process («; € (0,2)). Put
a = o™ = min(ay,...,aq) and f = a™® = max(ay,...,qaq). Assume that
a = o™ =1/8 and f = a™® = 1/6. Then our condition a/3 = 3/4 > 2/3 is
satisfied and the condition in [15, (2.9)] a™™(1/y + x) > 1 is not satisfied. Indeed,

we have
oY “+x]<a ——41)==-<1.
7 omazx 8

Note also that we prove that p(¢,z,y) is lower semi-continuous in (¢,z,y) and no
such result is proven in [15]. Moreover, the methods in [15] do not give strong Feller
property of the semigroup F;.

The paper is organized as follows. In Section 2 we study properties of the tran-
sition density of a one-dimensional Lévy process with a suitably truncated Lévy
measure. In Section 3 we prove some inequalities involving one dimensional transi-
tion densities ggi) (x) and densities of Lévy measures ,ug-é)(w) obtained by truncation
procedures used in Section 2. In Section 4 we construct the transition density
u(t, x,y) of the solution of (1) in which the process Z is replaced by a process with
a truncated Lévy measure. We also show that it satisfies the appropriate heat equa-
tion in the approximate setting. In Section 5 we construct the transition semigroup
of the solution of (1). We also prove Theorems 1.1, 1.3 and Proposition 1.2.

2. ONE-DIMENSIONAL DENSITY

This section is devoted to showing various estimates of the transition density
and its derivatives for a one-dimensinal symmetric Lévy process satisfying certain
regularity properties including weak scaling conditions. These estimates will play a
crucial role in the next sections, specially to make the parametrix construction in
Section 4 work.

First, we introduce the definition of a weak lower scaling condition and a weak
upper scaling condition (cf. [2]). Let ¢ be a non-negative, non-zero function on
[0,00). We say that ¢ satisfies a weak lower scaling condition WLSC(a, 6, C) if
there are numbers a > 0, #; > 0 and C > 0 such that

©(A0) > CA%p(0), for A >1,0> 6.
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We say that ¢ satisfies a weak upper scaling condition WUSC(, 6, C) if there are
numbers S > 0, 65 > 0 and C' > 0 such that

©(A0) < CNp(B), for A>1,60>06,.

Let Z* be a one-dimensional, symmetric Lévy process with a characteristic expo-
nent ¢ given by

(o) = /R (1 - cos(€x))u(x) d.

where v(x) is the density of a symmetric, infinite Lévy measure. We assume that
there exists 4 > 0 such that v € C'(0,ny), v/(z) < 0 for z € (0,7) and —/(z)/x is
decreasing on (0,7,). We also assume that 1 satisfies a weak lower scaling condition
WLSC(e,0,C) and a weak upper scaling condition WUSC(8,1,C) for some con-
stants 0 < o < 8 < 2, C,C > 0. As a matter of fact we may think that Z* is any of
the processes ZW, ..., Z@ defined in Introduction. In this section we examine the
properties of the transition density of the process Z* and its truncated version.

Similarly as in [28] we truncate the density v and the truncated density will be
denoted by 1(®(x). One may easily prove that there exists &y € (0,1/24] such that
for any & € (0, 8] the following construction of u® : R\ {0} — [0,00) is possible.
For z € (0,8] we put u® (x) = v(x), for x € (4, 26) we put u®(z) € [0,v(x)] and for
x> 26 we put u®(x) = 0. Moreover, 9 is constructed so that u® € C(0,00),
(@Y (x) <0 for x € (0,00), —(u®)(z)/x is nonincreasing on (0, 00) and satisfies
pO(—z) = p9(z) for z € (0,00). By 9® we denote the characteristic exponent
corresponding to the Lévy measure with density p(®.

Let us choose § € (0, dy]. We define

€ f(a) = ¢ /R (f(+w) + f(z — w) — 2 (2))u® (w) duw.

By gt(é) we denote the heat kernel corresponding to € that is
9 )

o0 (@) = €Dg (), t>0, 2R,

/g,gé)(a:) de =1, t>0.
R

It is well known that gfd)(x) belongs to C1((0,00)) as a function of ¢ and belongs to
C?*(R) as a function of z.
For r > 0 we put

h(r) = /}R (LA (222 ) dor
RO (r) = /]R (LA ([2Pr2)u® (z) da.

K(r)= / |z|?r~2v(z) du,
{z€R: |z|<r}
KO(r) = / 222 (2) dex.
{zeR: |z[<r}
Clearly, h and h® are decreasing. By [2, (6), (7)] we have

%h(r) < (L)1) < 2h(r), >0, (8)
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and the same inequality holds if we replace ¢ and h by ¥ and A9, By the scaling
properties of ¢ and (8), if C; = C/n? and Cy = 72C, then

CIANh(0) <h(M), 0>0,0< <1 (9)
and
h(M) < CoOAPh(0), 0<0<1, 0< A<, (10)

Let us observe that (9) is equivalent to

CINh (M) < R (), >0, A> 1. (11)
Combining (10) and (11) and taking # = 1 we obtain
hiz) < (Co+CrYR(1) (2> +27 7)), 2> 0. (12)
We also note that the last estimate together with [2, (15)] and (8) yields
v(z) <16(Co+ CyHA (L) (z7* 42777, 2> 0. (13)

Next, by (9) and [17, Theorem 1.1 and its proof] we have the following inequality

hr) < (él)z/af((m, r 0.

Lemma 2.1. Forr > 0 we have

and

Also

Proof. If r < ¢, then
K(r)=K(r) < h®(r)

For r > 6, since r2K ) (r) is non-decreasing, we obtain

2/a 2
K(r) < h(r) < h(5) = 52h[((5<)5>52[{(5)(5) < (%) SO,

This completes the proof of the first inequality. The second inequality is an obvious

consequence of the first one. Finally the last inequality follows from the second one
for r < 26 and for r > 2§ we have K@ (r) = hO(r).
O

Lemma 2.2. Let 7 > 0. Fort <1 we have
Cst'/* < h7H(1/t) < Cyt/P, (15)
where Cy = C/*(h(1) A 1)/ and Cy = €37 (W1 (L) v 1) b (1)"/7.
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Proof. Taking 0 = 1 we can rewrite (9) and (10) as
SR RN <A< G R) T o< <1
Putting A = h~!(s), for s > h(1), we have
(Co (1)) < W™ (s) < (Cah (1)) 75710
If 0 < sp <s < h(l) we have
so/ @57V < T (s) < b7 (s0)h (1)17 s7P

Choosing % =t < 7 we show that

1/a
cle (% A h(l)) /e < L (1) < CYop (% A h(l)) B (1)15 4175,

Lemma 2.3. For any z >0, a € R\ {0},

h (ﬂ) < C7Y(al" + a?)h () (16)

Proof. By (9), for |a] <1, we have

(g s

Since z2h(x) is nondecreasing on (0, c0), we obtain for |a| > 1,

1 () < o)

Combining both estimates we get the conclusion. 0
Lemma 2.4. Let n > 0. There is ¢ = c(n, 5,h(1),Cs) such that for all t > 0,
! 1 th(x)
" A dx < Ct/F) 17
and
! 1 th(x)
K A der < Ctlog(1+ 1/t = [. 18
/Ox(h_l(%) ) dr < Criog(1 +1/1), n =5 (15)

Proof. The result in the case n = 0 was proved in [16], hence we assume that n > 0.
If h=1 (%) > 1, that is t > ﬁ, we have

. 1 th(z) Y 1
I (h—w g )d ST

hence the conclusions are true in this case.
Next, we assume that h~! (1) < 1. Note that, by (15),

w7 () = @ny s
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for s < 1/h(1). We have

where

and

0l — t/hll(%)n:cnlh(x)d:c —th(1) — (hl G))n - t/hll(i):c”h;(a:)dx

Next, we estimate the last integral. Let N be the smallest integer such that

h_l <m> 2 1, then

I — t/h 2 (=1 () dx

VAN
~
[~]=
| — |
=
N
w‘
+ |~
—_
=
~_
>
—_
| I
3
\:‘“
=
tH
L
|
=z
&
QL
&

- i{” (o)) G- )

< (Czh(l))"/ﬁi(t(/wr )

k=1

+

Note that N < (h(1)t)~!, hence the last sum is of order '/ if /3 # 1 and of
order tlog(1 + 1/t) if n = §. The proof is completed. [l

Lemma 2.5. For every n € N, there is a constant ¢ = ¢(n, a, Cy) such that

/ etV ge < cehr__ Ly

oy
Proof. For every r € R we have 0 < ¢ (r) —¢©® (r) < [ v(u)du < h(d), hence using
(8) we obtain

/ O ge < b / etvllED g

IA
[
>
>
=
®
%M‘M
=
>
=
~
™
<y
o~

=

where the last inequality follows from [2, Lemma 16]. O
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We denote g; (x) = (h11(1> A th&?) ,t >0,z € R. By Lemma 2.1, according to
t
[17, Theorem 1.1], we have the following estimate

d* )

o < th(jz)
dzk7t

< o O |40 n ik

where ¢ = c(k, o, C1). Since [ (v(z) — p(z)) dz < h(5) we have, by [35],

L t>0,7€R, (19)

(9)
g: ' (0) < O 5,
9:(0)
Hence,
d" th
dxkggé)( ) < Ce(k+1)h(5)t[gt<0)]k |:gt<0) A &TD} . t>0,2€R. (20>
Moreover,
1
g:(0) < c— , >0, (21)
h (%)

where ¢ = ¢(a, C1).

Lemma 2.6. For any § € (0, o], there ezist ¢ = c(a, 9, h, Cy), where Cy is from (9),
such that for any t € (0,00), = € R, we have

6 Lzl 1 el
6. (2) < et A1) et e, (22)
SON
d E} l=| 1 e
01 (@) St A1)l YR e ¥, (23)
5 Bl | 1 1 e
I ()| <c(tNl)se o ) + - (1)5 eIl (24)
t t
d ) t |z
— g/ (). 25
)| < e (25)
Proof. Let Z©(t) be a Lévy process 1n R with a Lévy measure p®(z)dz. Its
transition density equals ¢° )( ). Put Z1 ( )= Z0)(¢), ,ug )( ) = u(x), g( )( ) =
g ().

By [26, Theorem 1.5] there exists a Lévy process Z?E(S) (t) in R? with the charac-
teristic exponent ¢® (&) = ¥ (|¢]), ¢ € R? and the radial, radially nonincreasing
transition density géat) (x) = gé t) (Jz|), x € R?, satisfying

5 —1d ¢
952 (r) = 50l (), v >0 (26)

The Lévy measure of Z’ () has a density 1 (z) = p(|z]), 2 € R? \ {0}, which
satisfies
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In particular, by our assumptions, Mg‘” (r) is nonincreasing on (0, c0). Moreover, by

monotonicity,

1
lim sup —g:(ft) (r) < /i:(sé)(r)a r >0,
t—0+ U
which implies that
L@y
tl_lgi ;g?’yt (’r’) = 07 r > 20. (27)

By [26, Proposmon 3 1] there exists a Lévy process Z\” (¢ in R5 with the char-
acteristic exponent ¢5 (f) = ¢(5 (€]), € € RS, Lévy measure du5 and the radial

transition density géét)( )= é (|z]), z € R, satisfying

—1d
9O (r) = ——g)(r), r>0. (28)
We have

= 25 (r) + (27r)°g57 () (29)
Let R > 26" > 2. Applying (28) and then (27) we obtain

1

§ . s
/ dpd) (y) = lim - 951 () dy
B(0,R)\B(0,25") =0+ 1 J B(0,R)\B(0,25)

87’(’ 1 R 5
=3 lim g | relmdr

4 1 (B d
= dim [ (=)} () dr
287 d?” ’

3 t—o0t t

47TR3 1 R d ©)
< li - - d
< ﬂggpt/, 795, (1) dr

AT R3

<

lim sup lgéét) (20"
tso+ U7
= 0.
This gives that supp( ) c B(0,26).
Denote dp'’ (x) = % (x)dz, for n =1, 3.
Let t < 1. Using Lemma 4.2 from [39] we get for n = 1,3,5

—lz| S|z

lo:
gl () < e g<”"0>9(52(0)

T

Lol g (3121
= (8 g00)e ™ #00), Ja| > emay,

where my = max{ [, ly[2dps? (y),n = 1,3,5}. We observe that there exists ¢; =
¢1(0,mg) such that

Izl la|
ews ! g(6 ) < el e R
This yields
g < ert s gL (0)e 3,
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provided |z| > €got. If [z < €F0¢, then

=]
ts > Co,
where ¢y = (9, M), which implies

0 (2) < 1% 75 g0 (0)e 3ol

Hence, for ¢ < 1, there is a constant c3 = c3(d, mg) such that

gul() < st gl (e W,z e R, (30)
Let ¢t > 1. Using again Lemma 4.2 from [39] we get

2] 1o ( Szl Iz
00(x) < e 5 (m) g0y < 5 g (0)

< g (0) e, |p| > emot, (31)

If |z| < #%°t, then

emg
gur(w) < €5 ) (0)e .
Combining the last two estimates we arrive at

emo

gii(x) <5 g 0)e M,z e RNt > 1,
which together with (30) yields

lz| 5€mo
9} (x) < et 0 g0 (0)e M, w e R 1> 0, (32)
where Next, we note that, by Lemma 2.5 and the inversion Fourier formula, we have

1
(= (3))
where ¢4 = ¢4(a, C1). This combined with (32), (26) and (29) proves the first three
inequalities.
We observe that, by [2, Theorem 21], for t > 0,2 € R?® we have

th(|z
i) < ao oo n D)

1
< C6€h(6)t—(h_l (l))QQZ‘(kBI),
t

where both ¢5 and ¢g depend only on C) and «. Hence (25) follows from (26). O

g)(0) < el

For any € € (0,1],7 > 0, t € (0,00) and € R we define
{ L APED for 2| <,

(3 o] (33)
ct B D/ae=lzl for |z| >,

where ¢, = (hll(i) A Th|(5||5|)> —i7= and where we understand h(0)/0 = oc.
The constant c. is chosen so that for any ¢ € (0,7] the function z — % (x) is
nonincreasing on [0, 00). Note that gf’ depends on 7 only by c.. We observe that
for t € (0,7] and |2| < h=1(1/t) A e we have §7 () = 1/h~1(1/t).

The following corollary, whose proof is omitted, follows easily from the Lemma
2.4 and the definition of §..
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Corollary 2.7. For any 0 <t <71 < 00,

/Rg@( D)dz < ¢,

where ¢ = ¢(e, h,T). Moreover, for any a > 0,
lim 39(z)dz = 0.
t—0t lz|>a

We introduce the following convention. For a function f and arguments x,u € R
we write f(z £u) = f(xr —u) + f(z +u).

Lemma 2.8. For any € € (0,1],7 > 0, there exists ¢ such that for
§ = min{dy, ca/(8d + 86 + 16),¢/(dn?)},

and any t € (0,7], z,u,w € R, we have

gf”( ) < gl (), (34)
0 (@ + ) = g (@)] < 55 C'IE' 1y (7 (4 ) 317 2), (35)
6@ + ) — 20 (a)] < —2 59 (36)

(h- ())Qse[xfﬁlﬁ,}iﬂuu% (

M(gt (@ ku) +gi(@tw),  (37)

(= (3))°

10 (x £ u) — g (2 + w)| <

where ¢ = c¢(a, B,0,7,h,Cy, Cy).

Proof. Here in the proof below a constant ¢ may change its value from line to line
but it is dependent only on «, 3,0, 7, h,Cy,Cs. To prove (34 - 36) it is enough to
show that, for £ =0,1,2 and = € R, we have

(38)

o] S e )
kIt - _ kIt ’
e (' (7))
For |x| < e, (38) follows directly from (20) and (21). From (15) we infer that
m < ¢t~ hence applying (22) we obtain

o 1
gt(‘s)( ) <c(tA 1)7—1 el < etV A 1)866 el ¢ <7,
et (3)
Similarly, by (23) and (24), we have
d s —2/a el 1 —|a|
e ()| <ct (t/\l)&ihil(%)e <7
and
& o) 3 ol 1
a Ja - SR
de-gt ( ) < ct™ (t/\]‘) R (h_l (l))2 t T

By the choice of §, for |z| > ¢ we have |x| > d+5+2 , which proves (38) if |z| > e.
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Next, for 0 < a < b we have, by (25),

62 (0) — ¢V (a)| =

IA

o

&
Q

IA
o
&

Now, we proceed with the proof of (37). It is enough to prove it for x > 0 and
0<u<w.

We first consider the case | —u| > |z — w|, which can be split into two subcases.
One of them is the subcase 0 < u < w < x. Then, by (20) and (21), we obtain

97 (@ + ) + 9" (@ — ) = (9" (x + w) + g (z = w))|

Y rd d
/J (d—fg@ (z+¢€) - d—ggt“’(x - 5)) d&‘

& s 2
=0 (G

e g (o w)(w? — ). (10)

(= ()

IN

IN

Next, consider the second subcase u < z < w and |z — w| < x — u. Denote
w* = 2x —w, then 0 < u < w* <z and |x —w*| = |r —w|. Hence, by (39) and (40),

1 1 5 d
97 (@ +u) + g (2 —uw) — (" (@ + w) + g (z — w))|
[ 4 *
<o (@ +w) — g (z + w)|
J * 1 * 1 1
Ho (@ +w) + 9" (@ — w*) = (6" (x +u) + g (z — )|

< ce'———— g (x — w)(w? — w? + w? —u?). (41)

(A= (3))

Combining (40) and (41) we get (37) if |x — w| < |z — u|. Next, we consider the case
|z —w| > |z — u|. We have

) )
19 (z £ ) — (97 (¢ £ w))|
) ) ) )
= 167 +u) + ¢V (|z —u]) — (9" (@ +w) + 67 (Jz — w]))
) ) ) )
< gz +u) — ¢V (@ + w)| + |07 (J& —u]) — g7 (Jz — w])|
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By (39) this is bounded form above by

ct

O [g ) (- w) — () + g (e — ul) (@~ w)’ — (@~ w)?)
o () g |
1
< ce” coi(z —ul)(z+w)? — (z+u)? + (x — w)? — (z — u)?)
(i (1)
1
= 2ce” 205 (@ — w)(w? — ),
(i (1)
which completes the proof of (37). ]

Lemma 2.9. Let € € (0,1]. For any t € (0,7], z,2’ € R if |z — 2'| < h7'(1/t)/4
and |z — 2’| < e/4 then

37 (@) < 97(2/2).
Proof. Recall that z — 3\ () is nonincreasing on [0, 00) and §° (—z) = §\° (z) for
z € R. Therefore we may assume that z > 2/ > 0.
Assume that o < (RY1/t)/2) A (e/2). Then z =2’ +x — 2/ < h7Y(1/t) Ae so
() = 7(w) = 1/ (1 1),
Assume now that o’ > (h=1(1/t)/2) A (¢/2). Then we have 2/ =z — (z — 2') >
x—x/2 = /2. Hence 5.7 (z') < 37 (2/2). O

3. SOME USEFUL ESTIMATES

In this section we prove several inequalities used in the sequel involving some
relationships between one dimensional densities and Lévy measures of processes
obtained by appropriate truncation procedures described in Section 2. From now on
our basic assumption on the process Z; = (Zt(l), ., ZYT s the assumption (Z0).
Let us recall that by v; we denote the density of the Lévy measure of the process
z9 i e{1,....d}.

Let 7 > 0 and €,0 € (0,1], Where usually § is picked conveniently. For each
i€{l,...,d} we denote by h;, ), gi(i), gﬁ) all the objects defined in Section 2 but
now correspondlng to the measure ;. Under our assumptions we may pick a positive
do < 1/24 such that for all 6 € (0,d] the truncated Levy measures ,ugé) have the
properties required in Section 2, hence we can apply all the estimates proved in that
section.

We adopt the convention that constants denoted by ¢ (or ¢, ¢, ...) may change
their value from one use to the next. In the rest of the paper, unless is explicitly
stated otherwise, we understand that constants denoted by ¢ (or ¢y, ¢s,...) depend
on vg, T, a, 3,C, C,d,n1,m2,m3,m1. We also understand that they may depend on the
choice of the constants dy, £ and 7. We write f(z) ~ g(x) for x € Aif f,g > 0 on
A and there is a constant ¢ > 1 such that ¢7!f(x) < g(z) < cf(z) for x € A. The
standard inner product for z,y € R? we denote by xy. We denote by B(x,r) an
open ball of the center z € R? and radius r > 0.
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Lemma 3.1. Let e € (0,1], § = min{do, 5775737 72 i =5} Foranyt € (0,7], z,2’ € R?

|z —=%]
ZfZ] lhj 1/t)§lll and’$_x/’§(5th€n

)<xz Hg

Proof. By Lemma 2.8 we get

[T (2~ TLois' (=)
d
zl

II o (zilnla; |)]

gjt g]t j
1#£7,1<i<d
H | |/\| /l) i‘x]_xﬂ
it (T4 T T
' j=1 hj 1<1/t)
Clearly we have
d

H gir (il A i),

d
)
V@) = T 9% (@)
=1

Now the assertion follows from Lemma 2.9.

| —
<C<ng x1/2> [ /\;m]

(42)

O

Lemma 3.2. Let ¢ € (0,1], § = min{do, 577575 ’dnz} and let a,b € R. Then there

exists ¢ such that for any t € (0,7], x € R, 1,5,k € {1,...,d} we have

) ) ) )
AJﬁﬂx+mw+¢2@—am—a@j@méMde

e(lal” + [aP) (maxuess 55 (2 + au)
<
= tﬁ/a )

[ 192+ aw) + @ = aw) = 200 @)l ) o

c(lal” + [af?) (maxiuczs 355 (z + au)
<
— t Y

) )
o199 (@ + aw) — g ()19} (y + bw) — ¢ ()1 (w) duw
(lal|b)®/%+]al|b|

< R <maX\u\g25 §,(7t) (x + au)) <maX|u\§25 §;E;2 (y + bu)) ,

)
S99 (@ + aw) — 61 ()19 (y + bw) — 95 ()11 (w) dw
< cllallh> 2t <

MaX|u|<26 gg,t) (z + au)) <max|u\g25 gz(,t) (y + bu)) )

(44)
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Proof. Let |w| < 2. Then, by (34) and (36),

2 2
5 s 5 a w
199+ aw) + 69 — aw) — 209@)] < ¢ [ L0 1) max 59 @ + o)
(hi (?)) fu |<25

First we show (43) and (44). We have
[ 1621+ aw) + 52 = aw) = 260 @l )

< /| e )+ ) ) — 20Dl )
wl<2

<cmaxg()(m+au)/ M/\l vi(w) dw
= lu|<26 7,6 R (h_l (l>)2 J

i t

hit (4
—cmaxgl(t)(:c—l—au)h ( : (t)>

[u|<26

h (’” |(|)> < clfl* + ol (1" (7))

By (10) and (15) we get

Next, by (16),

if i # j and

(e ()

This finishes the proof of (43) and (44).
To show (45) and (46) we use (34) and (35) to obtain

195 (x + aw) — ¢\ (2)|]g) (y + bw) — g} (y)]

!allb\ o
<
_C( (l/t 1/t A1l \w\g(ég” y—l-aw)lrrllax gkt(y+bw)

Therefore

) ) ) ) )
/R 199 (@ + aw) — ¢ (@)]1g0y + bw) — & )| (w) dw

IN

H1/H)h (/)
ch; \/ lal |b| ﬁf‘;‘% gz(t)(CU + au) ‘Hlli%X ar g(y + bu)

< [l +Jalll] iy (/1 (L0 0/1)) g o+ o) a0+ 0

u| <26 u| <26

which proves (45) and (46) since h; (\/h (1/t)h (1/t)) isequal tot 'ifi=j =k

and it is smaller than ct=%/¢ in the general case.
O
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Lemma 3.3. There is a constant ¢ such that for a € R any 0 < t < 7 and
i,7,k € {1,...,d} we have

2 a/(28) o 2
[ (CET e L
r\  (h;'(1/t)) t

[ (el lebier
r\ (h;'(1/1))

2
/ ( (lal + |w| |w| ) w)dw < ¢ [|al?t=P* 4 1P/0] - (49)
R

6 756!/(313) + ’a|a/2 + |al
t Y

n (48)

T(1/6)h; (1/8)

(lal + lw])w]? O () duo < ¢ [alB/2-Blo 1 o p-26/(Ga)
/]R< (hfl(l/t))z Al) . (w) dw < U |77 + ot ] (50)

Proof. Let k> 1, k € N and b > 0. Then

k|2 k(2
[ (L ) oy < [ (O
R b R b
e [0 |
+ 2 A1 |y (w) dw
R b
klp|2
< 2k1/ <|a! [l /\1) vi(w) dw
R b
+ ook W 1) viw) d
R b2/ (k+2) vilw) aw

Taking b = (h;'(1/t))? and k = 2 we arrive at

/}R <<|CELL+1L?%|;§|2 A 1) 1 (w) dw < ¢ (hi (%1'/0) +hy ( h;l(l/t)» .

Next, by the scaling property (16), h; (hfl‘((l'l/t)> < c|a|at+a2. Moreover, by (16) and
(15), we get

1 a/2

The proof of (47) is completed.
By similar arguments, taking b = (h; '(1/t))? and k = 1 in (51), we arrive at (48).
Now we proceed with the proof of (49) and (50). First, we observe that, by (15),
1/t (1/t) > ct?* and 1 (w) < s > by (13). Hence,
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2 2 2 2 1
[ (el ) oy < f (Gl ) L,
r \ 2 (1/t)hy (1)) R t2/e w7
|af*|w]? 1
S C/IE{(tQT/\l "w‘—H‘Bdw
|w|* 1
+ C/R(tQ/a A1l de

_ cl|a|ﬁt_5/°‘ + CQt_ﬁ/(%‘).

Similar calculations show that

(la] + [w]lwl® ®) 2 s
AL ) (w) < clalP/PtPe 4 eyt 28/Be),
/]R ( Y1/t (1)) F

The proof is completed. U

4. CONSTRUCTION AND PROPERTIES OF THE TRANSITION DENSITY OF THE
SOLUTION OF (1) DRIVEN BY THE TRUNCATED PROCESS

The approach in this section is based on Levi’s method (cf. [31, 14, 30]). This
method was applied in the framework of pseudodifferential operators by Kochubei
[24] to construct a fundamental solution to the related Cauchy problem as well as
transition density for the corresponding Markow process. In recent years it was
used in several papers to study transition densities of Lévy-type processes see e.g.
9, 21, 10, 19, 17, 4, 22, 23, 25]. Levi’s method was also used to study gradient and
Schrédinger perturbations of fractional Laplacians see e.g. [3, 8, 43].

From now on we assume that the assumptions (A0), and either (Z1) or (Z2) are
satisfied. We first introduce the generator of the process X. We define & f(x) by
the following formula

Z [+ aon) + 5~ aoyw) - 20w o) o

for any Borel function f : RY — R and any z € R¢ such that all the integrals on the
right hand side are well defined. Recall that a;(x) = (a1;(x), ..., aq(x)). It is well
known that & f(x) is well defined for any f € Cz(Rd) and any = € R?. By standard

arguments, if f € C?(R?), then f(X;) — fo X f(Xs) ds is a martingale (see
e.g. [29, page 120]).

Let us fix € € (0, 1] (it will be chosen later). For the given € we choose the constant
d according to Lemma 2.8. For such fixed ¢, 0 we abbreviate u;(z) = ,uz@ (x),
G =%, gie(r) = 017 (@), Gial) = 5.7 (@),

We divide X into two parts

Hf(x) =L f(z)+R[f(x), (52)
where
d

Lfa) =3 /R o+ ai(a)w) + Flo — as(w)w) — 2 ()] jus(ow) deo.

=1

| —
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Our first aim will be to construct the heat kernel u(¢,z,y) corresponding to the
operator &£. This will be done by using Levi’s method.
For each z € R? we introduce the “freezing” operator

- %Z/R [f(z+ ai(z)w) + f(z — a;(2)w) — 2f(x)] pi(w) dw,

Let Gi(z) = g14(x1) ... gar(xq) and Gi(z) = gre(x1) ... Gae(xq) for t > 0 and
= (x1,...,74) € R% We also denote B(z) = (b;(z)) = A~'(x). Note that the
coordinates of B(x) satisfy conditions (2) and (4) with possibly different constants
7y and 73, but taking maximums we can assume that 77 = n; and 73 = 7s.

For any y € R, i =1,...,d we put

bi(y) = (ba(y), - - ., bia(y))-

We also denote || B||o = max{|b;;|: i,7 € {1,...,d}}.
For any t > 0, z,y € R? we define

py(t,x) = det(B(y))Gi(z(B(y))")
det(B(y))g1,(b1(y)z) - - - gae(ba(y)).

It may be easily checked that for each fixed y € R? the function p,(t,z) is the heat
kernel of &Y that is

O py(t.x) = %, (1)), 1> 0.2 € RY

/ py(t,x)de =1, t>0.
R4
For any t > 0, z,y € R? we also define

ry(t,x) = Gi(z(By)")
= Gra(bi(®)x) - - - Gaa(ba(y)).
For z,y € R, t > 0, let

QO(taxu y) = Sfxpy(ta )(I - y) - gfypy(t’ )($ - y>7
and for n € N let

t
ilta) = [ [ alt = 5020001 5,) d ds (53)
0 JR

For z,y € R?, t > 0 we define

q(t,z,y) = antxy
and
u(t,x,y) = //pz —s,x — z)q(s, z,y) dz ds. (54)
Rd

In this section we will show that ¢, (¢, x,y), q(t, z,y), u(t, z,y) are well defined and
we will obtain estimates of these functions. First, we will get some simple properties
of py(t, z) and r,(t, ).



SDES DRIVEN BY LEVY PROCESSES 21

Lemma 4.1. For any t € (0,7], ,2',y € R? we have

d

p,(t,z) — p,(t. 7)) < c [1 A (Z %) ] (ry(t, 2/2) + ry(t,2'/2)) .

The proof is very similar to the proof of [28, Lemma 3.1] and it is omitted.

1

Lemma 4.2. Assume that ¢ < v For any t € (0,7 + 1], z,y € R?, we have

ry(t,z —y) < a (H m) e—clz—yl (55)

i=1
For any t € (0,7 +1], 2,y € R?, |z — y| > emd®’?, we have
ry(t,x —y) < erte eyl (56)

The proof is almost the same as the proof of [28, Corollary 3.3.], so we do not
repeat it.

Using the definition of p,(t,z) and properties of g;(z) we obtain the following
regularity properties of p, (¢, x).

Lemma 4.3. The function (t,z,y) — p,(t,x) is continuous on (0,00) x RY x R.
The function t — p,(t,z) is in C*((0,00)) for each fized x,y € R The function
x — py(t,z) is in C2(R?) for each fired t > 0, y € R%.

Lemma 4.4. For any y € R? we have

c
a—%py(t,x - y)‘ < tdD/a (1 + [z — y[) T

ie{l,...,d}, te(0,7], z € RY,

0? c

—Fpylt, T — <
axi(‘?xjpy( y L y)' = t(d+2)/a(1 + |x _y|)d+17

i,j€{l,...,d}, t€(0,7], z € R%

Proof. The estimates follow from properties of g;(z) and Lemma 2.8 and the same
arguments as in the proof of [28, Corollary 3.3.]. O

Let f: R" — R",n € N, be a Lipschitz function. It is well known that y almost
surely the Jacobi matrix J¢(y) of f exists. For any yo € R™ we define (see Definition
1 in [11]) the generalized Jacobian denoted Jf(yo) as the convex hull of the set of
matrices which can be obtained as limits of J¢(y, ), when vy, — yo.

Now, we recall two results from [28] which will be useful in the sequel.

Lemma 4.5. [28, Lemma 3.6]
Let b (z,y),x,y € R%:i = 1,...,d, be real functions such that there are positive
n5,M6 > 1 and

b5 (z,y)| <75, 2,y € RY, (57)
b5 (z,y) = (@, 9)| <nelle =7 +y —7l), =9,7,7€R" (58)
Let, for fized x € RY, ¥, be a map R — RI*L given by

U (w,y) = (w,&,...,&) € R, weR,yeRY,
where § = bi(y) (v —y) + b} (z, y)w.
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Jacobian determinant denoted by Jy,(w,y) has the property

Wo(w,y)] < 1,
(1/2)det B(y)| < |Jw, (w,y)| < 2[det B(y)|,

There is a positive g = €o(11, M3, M5, M, d) < ﬁ such that the map V, and its

for |x —y| < e, |w| < eo, (w,y) almost surely. Moreover the map ¥, is injective on
the set {(w,y) € R |z — y| < ep, |w| < o}
If, for fized y € RY, ®, be a map R — R given by

d,(w,z) =V, (w,y), weR,reRY
then the Jacobian of ®, denoted by Jo,(w,x) has the property
(1/2)]det B(y)| < |Ja, (w, )| < 2| det B(y)],

for |z —y| < eo, lw| < e, (w,z) almost surely. Moreover the map ®, is injective on
the set {(w,z) € R™; |z — y| < &g, |w| < &p}.

Remark 4.6. [28, Remark 3.7]
Let for x € RY, U, be the map R? — R? given by

To(y) = (&1,...,&) € RY, yeRY,

where & = b;(y)(x — y). Then we can find gy such that all the assertions of Lemma
4.5 are true and additionally

(1/2)|det B(y)| < |Jg, (y)| < 2|det B(y)],

for |z —y| < €0, y almost surely. Moreover, the map W, is injective on B(z, o). We
can 2}180 find 6; = 51(7]1,7]3,775,7]6,d) > 0 and 6 = 51(7]1,773,775,7]6,d) > 0 such that
the W, image of the ball B(z,d;) contains B(0, ds).

Let bf(x,y) be the functions introduced in Lemma 4.5. We will use the following
abbreviations

zi = Bi(z,y) = bi(y)(z —y) = bu(y)(x1 — y1) + ... + bia(y)(Ta — va),
by = bi(z,y),
biy = b (z, ).
Let for k,1,m € {1, ..., d},
A = A, = [ TLouales + b0 lna et b0) = g 2 ) o (w0) s
R4
For | # k we denote
Biem = Birm(z,y)
= [ T el ) sl + B) = g+ )
Rk
X |Gtz + brw) = gra(ze — brw)| pim (w) dw.

When the assumptions (Z1) are satisfied we put 0 = 1 — «/(303), wile under the
assumptions (Z2) we put o = 23/(3a). Clearly, in both cases o € (0, 1).
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Corollary 4.7. Assume that 20 < ey, where €y is from Lemma 4.5. With the
assumptions of Lemma 4.5 we have fort <7, k,l,m € {1,...,d}, k #1
/ [Aim + Biem|dy < ct™, x € RY,
ly—=z|<eo

and

/ [Ajn + Bipm)de < ct™”, y€RY
ly—z|<eo

where ¢ = ¢(T, o, d, M1, 12, M3, N1 M, Mo, €, 0, V).

Proof. In the proof we assume that constants ¢ may additionally depend on 75, 7.
It is enough to prove the estimates for [ = 1 and & = 2. For z,y € R? we get
|b1 — b3| < mlx — y|. Hence, from (37), we have for w € R,

‘gl,t(zl + bjw) — gl,t(zl + biow)’

¢ 1 5 A1) (97,(21 £ bjw) + g1 (21 £ byw))
(h7'(1/1))

r — ylw? * * * *
(AT A1) gl )+ g1y 1 % i)
(' (1/1)

IN

This implies that
ALm S C(Aim + Aim + A?,m + Aim)’
where
d R |ZL‘ . y|w2
A= [ Toite+ i (— A 1) fim 1) o
R (ht(1/1))

with b = bf,i > 2 and bl = b, b2 = —b*, b3 = bi, and b* = —b%,. Note that

the functions b} = bl (z,y) have the same properties (57, 58) as bf. To evaluate

the integral [ A}, dy we introduce new variables in R, given by (w, ) =
lz—y|<eo “T1,m

U, (w,y), where & = 2z + brw,i = 1,....d (or & = 2z + bjw if A"

1,m

r =2,3,4). Note that the vector £ = (&;,...,&;) can be written as
£=(z—y)B(y)" +wb",
where b* = (b}, ...,b}), hence

(€ —wb)AY)" =2~y

is treated for

From this we infer that
jwl?|lz — y| < e(|€] + Jw])|w]?.

Let Q. = {(w,y) : |y — x| < o, |w| < ep}. Due to Lemma 4.5, almost surely on
(., the absolute value of the Jacobian determinant of the map ¥, is bounded from
below and above by two positive constants and ¥, is an injective transformation.
Let V, = U,(Q.). Observing that the support of the measure p is contained in
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[—&0, €0] and then applying the above change of variables, we have

AJOCSEO tm = C/lz/wSEO/H %l ( hil(1/1)” M) pnlee) i dy

) (¢l + P
[ e (e )

X i (w)] Sy, (w, y)| dw dy
- /H g1,(&) (MM) b () dov i,
Vo =1 ( 1_1<1/t))

where the last equality follows from the general change of variable formula for in-
jective Lipschitz maps (see e.g. [18, Theorem 3]). Since [£| < 1 for (w,§) € V., we

get
d
/ Aimdy < c/
ly—z|<eo l€1<15

e [ (el N
Hgi,t(&)/ﬁ( (i) Al) i (w) dw dE.

Applying (48) for m = 1 we have for [£] < 1,

/ (el foD ol 1) oy dw < o2 H IS
R\ (b)) - o

Consequently, by Lemma 2.4, we obtain

IA

d
gel6) 4 |gfar2 o
[ abase| @ decaeeon
ly—z|<eo 1€1<1 324

If the assumptions (Z1) are satisfied, then p; = ... = pg and 0 =1 — «/(3f), so
/ Al dy<ct™? for m=1,....d. (60)
ly—z[<eo

Now assume that the assumptions (Z2) are satisfied. Then applying (50) for m > 2,
we have for [£| < 1,

(€] + lwDof? e s
/R< (h (/1) M)”m( o el

By Lemma 2.4, we obtain

/ Al dy < ct=28/B) p opl2Ble < (=28/B0) for m=2,....d.  (61)
ly—z|<eo

By elementary arguments —1 + «/(35) > —28/(3a), so for t € (0,7] we have
14/ B38) < ¢4=28/2) " Hence, when the assumptions (Z2) are satisfied, using (59),
(61) and the fact that o = 28/(3«), we have

/ Al pdy <ct™ for m=1,....d. (62)
ly—z|<eo
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In a similar way as (60), (62) were obtained, for the both assumptions (Z1), (Z2),
we get

/ Al pdy<ct™” for m=1,...,d, r=234.
ly—=z|<eo
This completes the proof of the bound (for the both assumptions (Z1), (Z2))

/ Aipdy <ct™” for m=1,...,d
ly—z|<eo

For z,y € RY we get |b} — %y < ns|x — y|. Hence, from (35), we have for w € R,

|91,¢(21 + bjw) — gre(21 + blgw)| [goae(22 + byw) — go¢(20 — byw)|

LETATIN ]
T/ 1)(*(1/1&)“

X (g’{t 21+ bjw) + g7 (21 + biw)) g 93 4(22 £ byw)

IN

IA

(i ) (o )

X giﬁt(zl + bjw) + 9] t(Zl + blow)> g;t(ZQ + byw).

This implies that
Biom < C(B%2m +B12m+B12m+B12m)

where

with b7 = b7, > 3 and bl = b2 = b, b3 = b = bty and b} = b3 = —b2 = —b% = b3,
Note that the functions b7 = b7(x,y) have the same properties (57, 58) as b
We proceed as before and introduce new variables in R+, given by (w,§) =

U, (w,y), where & = z; + l;sz,z' =1,...,d. Again we have that
wllz —y| < e([€] + w])|w].

By the same arguments as before

d 2

B! dgc/ f" Z/((\§|+|w|)]w] /\1) m(w) dw dE.

| Blesdvse] [Lsice) | (o manciyy 1) ot o
(63)
If assumptions (Z1) are satisfied then hy = hg, iy = ... = pg and 0 = 1 — a/(35).

Repeating the arguments which give (60) we get
/ Biyndy<ct™ for m=1,...,d (64)
ly—z|<eo

If the assumptions (Z2) are satisfied, then by (63), (49) and Lemma 2.4, we get

/ Bigmdy < ct' P log(1 4 1/t) 4 ct PP < (4728/B0) — 4o (65)
ly—z|<eo
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form=1,...,d. In a similar way as (64), (65) were obtained, for the both assump-
tions (Z1), (Z2), we get

/ Biyndy<ct™ for m=1,...,d r=234
ly—z|<eo
This completes the proof of the bound (for the both assumptions (Z1), (7Z2))
/ Biomdy <ct ™ for m=1,....d,
ly—z|<eo

which finishes the proof of the first estimate.
To estimate the second integral (with respect to dz) we proceed exactly in the
same way. [

For fixed [l € {1,...,d} let us consider a family of functions b} (z,y) = b;(y)a(x),i €
{1,...,d}. They satisfy the conditions (57) and (58) with 15 = dn? and ns = dni7s.
Let 9 = €o(m1,m3, 75,76, d) be as found in Lemma 4.5 and Remark 4.6. Finally we
choose ¢ = e(ny,m3,d) = 4d3€/—02m‘ From now on we keep gg, ¢ fixed as above. Recall

that if we fixed € we fix § according to Lemma 2.8.

Lemma 4.8. For any i € {1,...,d} and w;,6;,¢;,d; € R we have

1:1 i=1 =1 i=1

;l I@dz) (1;11 Jeei (1)
+ <] dl> —(dj—ﬁj))<H@i>
—6;) (1:[ ﬁi> (@, — 61) (’H @>] . (66)

We understand here that for m > n we have [[_ €; =1 and ) ; =0.
Proof. We observe that
d d d
H@i—ch Z (Hc,) Wi — € ( H ai> ) (67)
i=1 i=1 j=1 i=j+1
Similarly, we obtain
d d d /i1 d
Hﬁi—Hdi:Z< di) (ﬁj—dj)(H ﬁi),
' ‘ j j i=j+1

SO

[Ie:-116:=> (j di) (d; — 6;) ( 11 ﬁi) . (68)
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By (67) and (68) we get

d d d d
1_[10%—1—11&»—1_1101—11{&
d d d d
(it 1) i)
= Z | 0¢> (e; — <) H @i —Z (Hc&) (d; —6;) (H ﬁi>(69)

For any j € {1,...,d} we have

‘_ Cz) (@] —Cj> (H sz) — <_ {ILZ> (dxj —ﬂj) <H ﬁl>

S (ha) (0 — ) (H @-) (@ = <3) ( I M)

k=1 \i=1 —k+1 i=j+1
i1 d
+ (Hdz> (o; —¢j — (d; = 6;)) ( 11 04)
=1 i=j+1
d  /i-1 k-1 d
o3 (M) e@-o (T o)w-s(da) @
k=j+1 \i=1 i=j+1 i=k+1
Now, (69) and (70) give (66). O
Proposition 4.9. For any x,y € R¢, t € (0, 7] we have
1
|q0(t, 2, )| < € Bfardja” (71)
For x,y € R%, t € (0,7], |y — x| > g0 we have
|ao(t, z,y)| < cem G/, (72)
For any t € (0,7], € R we have
|ttty < e (73)
Rd
For any t € (0,7], y € R? we have
[ laltwy)dr < e (1)
Rd
Proof. We have
L
q@(t,x,y) = 3 Z/ py(t,x —y+ a;i(x)w) + py(t,x —y — a;(z)w)
i=1 /R

—py(t,z —y+ ai(y)w) — py(t,x —y — a;i(y)w)] pi(w) dw. (75)
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Fori=1,...,d we put

Re = 5 [ fts =y +a@w) +(te -y = a@)
—py(t,z =y + ai(y)w) — py(t,x — y — a;(y)w)] pi(w)dw.  (76)

We have qo(t,z,y) = Ry + ...+ Ry It is clear that it is enough to handle R; alone.
Note that

—G (2 =y —wer(A(y))(B)")] m(w)dw. (77)

We will use the following abbreviations

2 = ~Bi(177y) =bi(y)(x —y) = ba(y) (w1 — y1) + ... + bia(y)(Ta — Ya),
ki = bi (2, y) = bi(y)as(z),
kiO = Eil(l', l’)

Note that klO =1 and kiO = O, 2 S 1 S d.
Let

d d d
w) = Hgi,t(zi + kiw) + Hgi,t(zi — kjw) — Hgi,t(zi + kiow) ngt — kiow).
i=1 i=1 i=1
We can rewrite (77) as

R, = —det /5t w) g (w

By Lemma 4.8, denoting
i = Gir(z + kw), 6; = gi(zi — kiw), ¢ = gir(zi + kiow), d; = gii(2z — kipw),

we have
j-1 d
5t(w)22[<25f’j(w)>+5f]( ) (Z 5§”(w)>]7 (78)
j=1 | \k=1 k=j+1
where
5fﬂ(w) = I:Id’ (cr — dg) ( H 0i> (@j — ;) (H 0%> k<7,
o' w) = (][] i) (a;—e—(d;—6) <H @1') ,
o (w) = (][] (d;—8) ( 11 ﬁi) (wr — Gy) ( 11 0%) k>
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We denote M;; = max,|<as it (2 + k*w), where k* = max{1, |k, |k, ... |kal}.
By (45), for k < j we have

d
/I5’” N (w)dw < T MM/\ (en — i) (o) — ;) [ma(w) dw < et/ T ] M.
i#5k =1

Similarly, for £ > j we have

d
[t ity du < TT Mo [ 105 = 65) (0 = 60) ) do < -2 [ .
=1

i#7,k
By (43) we obtain

d
/ 1677 (w) |y (w) dw < HMzt/ ey — 0 — (dj — 65)|p (w) dw < et~ T] M.
i#£] i=1
It follows that

d
|R1| S Ct_ﬂ/a H Mi,t‘
i=1
Since M;; < 7 we obtain (71) and moreover

d—1+48
«@

|Ry| < cmiin Mt~

By [28, Lemma 3.2], max; |z;| > md;mp: — y| and suppose that |z;| > 771(1;3/2|$ -yl
Then, since |k*| < n?d, we have for |z — y| > 4d°/?n3§ and |w| < 26,

20+ Kol >z = kel > @ =yl — 2nidd

1
nd3/?

1 n3o 1
= —|r—y| (124" > —y).
el (1= 20 ) 2 ey

This yields that

—B/a—(d—1)/a ~ |z -y . 5/2 3
[Ri| < ct it <2md3/2 ;e =yl = 4d” g0

and provides the exponential bound

_( ==yl
|Ry| < ce (2’71”’3/2), |z — y| > max{2d*?n,e, 4d°/ %136},
Recall that & = (77— and ¢ = min{dy, S5t an} Hence
max{2d®?n,e, 4d°*n36} < g, so finally

__lz—yl
|Ry| < ce 2md*? |z —y| > &,

which proves (72).
The estimates (73) and (74) follow from Corollary 4.7 and (72). For example to

handle the integral
/ / 1677 () |pr (w) dw dy, = € RY,
ly—z|<eo /R
we take

bi(x,y) = —kio(z,x),i=1,...,5 =1, bi(x,y) =ki(z,y),i=J,...,d.



30 T. KULCZYCKI AND M. RYZNAR

Such choice of functions b} enable us to apply Corollary 4.7, since they satisty all
the assumptions of Lemma 4.5. Hence

/ / 1699 () (w) duwr dy < et
ly—z|<eo

The same argument (with an appropriate choice of b}) shows that for k # j

/| | /|5]” ) (w) dwdy < et™°.
y—x|<eo

/ lgo(t, z,y)| dy < ct™°.
|y—x|<50

By (72) we can extend the domain of integration to the whole R¢ keeping the upper
bound as above. U

This implies that

Using Corollary 2.7 and similar arguments as in the proof of Proposition 3.10 in
[28] we obtain the following result.

Proposition 4.10. For any t € (0,7], x € R we have

/ Dotz —y)dy < c, (79)
Rd

| it = <. (80)

For any 6, > 0,

lim Sup/ py(t,x —y)dy = 0. (81)
t=0% pcRd Be(x,61)
Moreover,
li ttr—y)dy =1 82
Jim dey(,x y)dy =1, (82)

uniformly with respect to v € RY.

In the sequel we will use the following standard estimate. For any v € (0, 1],
0o > 0 there exists ¢ = ¢(7, 0p) such that for any 6 > 6y, t > 0 we have

t
/O(t S)fy—l 0— 1d 90 t(fy—l)—l—(@—l)-&-l‘ (83)

Lemma 4.11. For any t > 0, x € R? and n € IN the kernel q,(t,x,y) is well
defined. For any t € (0,7], x € R? and n € N we have

;L—l—lt(nJrl)(l o)—1
nta 9 dy < ) 84
[ty < (84)

C;LJrlt(n—l—l)(l—o‘)—l
[ty < T (85)

For any t € (0,7], 7,y € R and n € N we have

Cgtn(lfa) -1

|qn(t7 €, y>| <a (n!)(l—a)t—l—l—(d-l-ﬁ)/a ) (86)
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For anyt € (0,7], z,y € R andn € N, |z —y| > n+ 1 we have
< ntn(l o) 7>\‘I_y| -
- n+1
90t 2 9)| < e e (87)

where A = £/gy.

Proof. By Proposition 4.9 there is a constant ¢* > 1 such that for any z,y € RY,
€ (0, 7] we have

. 1
lo(t 2, 9)l < < ame (88)
lqo(t, 2, 9)| < eV o -y > 1. (89)
/]Rd lqo(t, x,u)| du < c*t77, (90)
[l du < e, 1)

It follows from (83) there is p = p(c) > 1 such that for n € N,

t
f_ g) o gn+D(A-0)-1 g < p H(n+2)(1-0)—1

t
/ (t . S)—Usn(l—a)—l ds < P t(n—l—l)(l—a)—l,
2 T (n+ e

t
- — p -
t—s asn(l o) ds < t(n-l—l)(l O').
fie-s ST

We define ¢; = pc* > ¢* and ¢y = 219/ ((1 — o)™ +p) > c1.

We will prove (84), (85), (86) simultaneously by induction. They are true for
n =0 by (88, 90, 91) and the choice of ¢;. Assume that (84), (85), (86) are true for
n € IN, we will show them for n+1. By the definition of ¢, (¢, z, y) and the induction
hypothesis we obtain

9(d+pB) /e rt/2
\qns1(t, z,y)| < ey / / lgn(s, z,y)| dzds

n2 (d+B)/o d n(l—o)—1 d
+Cl( )i-of-LH@+8)/ //2 /]Rd la0(t — 5,2, 2)| dzs™ 5

n+12(d+6)/a (1) (1)1
< () @A /0 s ds

e cgg(dw)/acl t t 5)(1 )1 gnl1=o)1 g,
1 (n!)l—ot—1+(d+ﬂ)/a £/2
nt(n-‘rl)(l o)
=a ((n+ HHi- ot(d+B)/a
672’L+1t(n+1)(170)

((n+ 1)!)1—at(d+6)/a'

Hence we get (86) for n + 1. In particular this gives that the kernel ¢, (¢, z,y) is
well defined.

1
( 2(d+ﬁ>/aE n 612(d+5)/@p)

:Cl
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By the definition of g, (¢, z,y), (90) and the induction hypothesis we obtain

| Jattwldy < / [ att = .. 9llants, 2 )l d=dyds
R4 R JRd
n+1 t ( e ) .
< * t — o .(n+ o d
< ¢ —(n!)l ~ /0( s)” S

* C?+1 p t(n+2)(1—o‘)—1

Ce (1)

n+2
_ €1 H(n+2)(1-0)—1

((n+ 1))t ’
which proves (84) for n + 1. Similarly we get (85).
Now we will show (87). For n = 0 this follows from (89). Assume that (87) is
true for n € IN, we will show it for n + 1.
Using our induction hypothesis, (84) and (85) we get for |z —y| > n + 2

|Qn+1(tax7y)| QO(t_S7xvz)QH(S>Z7y) dzds

x—Z‘Z \x—y|

/ / oy (=52  2)qn (S, 2,y) dz ds
lz—z|< = y
_ Alz—y]
< e nr / / \qn(s,z,y)\dzds
Rd

_Alz—y| 1 0_)
+c nt2 go(t — 5,2, 2)| dzs"1=) ds
( R

n+1t (n+1)(

. _a eyl cpertrti=a)y, Al
6 n C [ n
_1—0«n+D) "((n+ D))o

(n+1)(1—0) _
1 41, no) t _Alz—y|
= | — +cye] | ————e 2,
(1—0 2 1) ((n+1hHt-e
which proves (87) for n + 1 since by the choice of constants - A+ e <
n+1
cicy . U

By standard estimates one easily gets that for any C' > 0,
i < ¢t crt <
(n!)(- cr) (k!)(1-o) ot (n — k)=o) =

n=~k

where ('} depends on C' and o.

Proposition 4.12. For anyt € (0,00), 7,y € R® the kernel q(t, z,y) is well defined.
For any t € (0,7], x,y € R¢ we have

IR = -
la(t.2,9)| < e = T+ e — g

There exists a > 0 (a depends on 7,a, B,C, C, d, 01, M2, 03, M4, Vo, €0, 0o ) such that for
any t € (0,7], .,y € RY, |v — y| > a we have

lq(t, z,y)| < ce VT,
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For any t € (0,7] and x € R we have

/d lq(t,z,y)|dy < ct™?, (93)
R

|t dy < e, (94)

Proof. By (86) we clearly get > o |qn(t, 2, y)| < ct=@+H/>  Hence, the kernel
q(t,z,y) is well defined and |q(t, z, y)| < ct—(@+8)/a,
For |z —y| > 1, by (86), (87) and (92), we get

[\/Im—yl—l] .
lq(t,z,y)| = o, y)+ D aalt,z,y)

=0 n=[y/le=yl]

[ |m7y|71j| Cng(l_U) 7}\m > 0721’7'”(1_0')
< ) ()i © DY (n!)l=ot(@+B)/a

=0 n=[/lz=vl]
- —c34/ |z—

S t(d+ﬁ)/ae 3/ | y\’

where [z] denotes the integer part of z. Take the smallest ng € IN such that

no(l —c) —1> (d+ B8)/a and a = nd. For \/|z — y| > /a = ng we get

[V |ac—y|—1] CnTn(lfo) \/_ 0 Cntn(lfa)
20 oMy 2
qt,z. )] < o Y (n)i e © ta ) (nl)i=ot(@+B)/a
=0 n=[/lz=yl|
< ce VIl
The inequalities (93) and (94) follows easily from (84) and (85). O

The above result enable us to obtain estimates of u(t, x,y).

Corollary 4.13. For anyt € (0,00), z,y € R? the kernel u(t,x,y) is well defined.
For any t € (0,7], 7,y € R? we have

ut, 2, y)| < —————e-VIl < ‘ (95)

= ¢—1+(d+8)/a = t—1+(d+ﬂ)/a(1 + |z — y|)d+1'

There exists a > ¢ > 0 (a depends on 7, a, 3,C,C, d, 11,2, N3, M4, Vo, €0, 0p) such that
for any t € (0,7], z,y € RY, |x — y| > a we have

[u(t,z,y)| < cem2VITT,

For any t € (0,7] and x € R* we have

[ttty < (96)
R

/ lu(t,y, x)| dy < c. (97)
Rd
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Proof. We start by obtaining estimates of

t
I(t,z,y) = / / Pt — 5,0 — 2)lals, )| dz ds.
0 R4

By Lemma 4.2, for 0 < s < t/2, we have

and, by Proposition 4.12, for t/2 < s < t,

C
la(s, 2, 9)| < sagya-

Hence,

t/2
Moy = [ [ ple= s =2)lats.z )l dzds

t
+/ / Pt — 5,2 — 2)la(s, 2, )| dz ds
t/2 JRY

c t/2 c t
S dzds + ——— (t—s,2—2)dzd
< td/a/o /]Rd|Q(S,Z,y)| z S+t(d+ﬂ)/a/t/2/mp( s,x—z)dzds
C C Is

<

(—1+o+d]a T —1+(d+B)/a = t=1+(d+6)/a’

(98)

where (94) and Proposition 4.10 were applied to estimate the integrals with respect

to the space variable.

Let a be the constant found in Proposition 4.12. Assume that |z — y| > 2 + 2a.

By Lemma 4.2, for 0 < s < t, we have

Pt —s,x—2) <ce Y p — 2 >z —yl/2 > 1.

Proposition 4.12 implies that for 0 < s < t,

‘Q(S, Zay)‘ S ce” ! |:L“fy\, |y - Z‘ > ’Qf - y’/Q > a.

Hence,

t t
I(t,z,y) < // ...dzds+// ... dzds
0 Jlz—z[>|z—y|/2 0 Jly—z[>|z—yl/2

IN

t
ce_clx_yl// lq(s, z,y)| dz ds
0 JRd

t
4+ eV lz—yl / / pz(t —S,x— Z) dz ds
0 JR4

A L AV ]
< cem Vel

Combining (98) and (99) we obtain

IN

C
—c14/ |z—y|

By (54), (55) and (100) we get (95).

(99)

(100)

Next, (96) and (97) immediately follow from (93), (94) and Proposition 4.10. [
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For any z,v € R¢ put
D(z,v) = [x; — |v1], 21 + |v1]] X ... X [xg — |va|, Ta + |val]-
Lemma 4.14. For anyt € (0,7], x,y,v € R? we have

Pyl ) &yt = ) = 29, (0 2)] < 1A ()] mx 7, (0,6).

Proof. Put «; = gi,t<bi(y)(x + U)), 6; = gi,t(bi(y)(x - U)), ¢ = d; = gi,t(bi(y)$)-
Note that

1
m(}?y(t,vav)—i-py(t,x— )—prtl‘ H@Z-i—Hﬁ _HCZ Hd

For any j,k € {1,...,d}, by (36) and (35), we get

clvf?

G; —c; —(d; —6;)] < —— max q:+(2).
fai —ei = (di = 6,)l < 2% zefb; (y)z—Ib; (y)ol bj (w)a-+b; (w)o] 9ie()
and
| — Gkl |(d; — 6;)]
clol* a2 a Gu(2)
max A max i\ 2 ).
= P10 e (oo ol @bl el (o=l (ol (-t el]

Using this, Lemma 4.8 and (34) we obtain
Kl

C|v
|py(t>$ + U) +py<t7$ - U) - 2py(ta 93)| < 12/ gerg?fv) Ty(t 5)

Lemma 4.15. For any € € (0,1], ¢ >0, z,y,v € R? and t € (&,7 + £] we have

Z /}R py(t; 2 =y + a;(v)w) + py(t, x =y — ai(v)w) = 2py(t, = y)| ps(w) dw

< C(é) “elemul, (101)
Z / Ity o))yt g o)) =2, (7 )] )
(£)¢> 7. (102)

where c(é) is a constant depending on &, 7, o, 8,C,C,d, 1,02, M3, Na, Vo, €0, Op-

Proof. We estimate the summand corresponding to ¢ = 1. By Lemma 4.14, we get
for w € R,

Ipy(t,z —y+ ar(v)w) + py(t,x —y — a1 (v)w) — 2p,(t, v — y)|

< ct™Hw|? max ry(t,8).

- | | feD(z—y,a1(v)w) y( 6)
Recall that ui(w) = 0 for |w| > 2§, so we may assume that |w| < 20. By Lemma
4.2 we get

max max ry(t,€) < eyt~ Yeeclevl,
we[—26,20] £€D(x—y,a1 (v)w)

Now (101) and (102) follow by the fact that yu(w) < e1j_as2s(w)|w| ™77, The last
inequality is a consequence of (13). O
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Lemma 4.16. Let 7» > 7 > 0 and assume that a function fi(x) is bounded and
uniformly continuous on [11,72] x R:. Then

sup
te[r1,m2], z€RY

/Rd py(sl,x - fily)dy — fi(x)] =0 as e — 0r.

Proof. The lemma follows easily from Propostion 4.10. U
For any t > 0, z,y € R? we define

t
oot 2) = / / p.(t — 5,0 — 2)q(s, 2,y) dz ds.
0 R4

Clearly we have
U(t, z, y) = py<t7 T — y) + QOy(t, 'T)
For any t > 0, x,y € R%, f € By(R?) we define

0.f@) = [ ety
Gifte) = [ ulte.)f)dy
@) = [ atteniw iy

Now, following the ideas from [23], we will define the so-called approximate solu-
tions. For any t >0, £ € [0,1], t +& > 0, 2,y € R? we define

t
Sﬂ(yf)(t,x):// p(t—s+&x—2)q(s,2,y)dzds
0 JR4

and
WOt 2,y) = p,(t+ &2 —y) + 0O (¢, 2).
Forany t >0, £ €[0,1], t+& >0, 2 € RY, f € B,(RY) we define

o f(x) = / SOt 2) () dy,
Rd

U0 @) = [ uOtt s
Bof(x) =0, Ug"f(x) = Vof(x) = f(2).

By the same arguments as in the proof of Corollary 4.13 we obtain the following
result.

Corollary 4.17. For any t € [0,00), £ € [0,1], t +& > 0, z,y € R? the kernel
u®(t,x,y) is well defined. For any t € (0,7], £ € [0,1], z,y € R? we have
c

9 —
u t, xZ, S '
[u'S (¢, x,y)| (t + &)~ 1H@+B)/a(] 4 |z — y|)d+!

For any t € (0,7], £ € [0,1] and x € R? we have

R

, W (t,y, x)|dy < c.
R
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For any ¢ > 0 and z,y € R? we put
d

Ffr) =3 /| U e+ fo ) = 27)] (o) e

i=1

2! f(w Z /w|>< r+a;(y)w) + f(x —a;(y)w) — 2f(x)] pi(w) dw.

Lemma 4.18. Let f € Co(RY) and 75 > 7, > 0. Then Q;f(z) as a function of (t,z)
is uniformly continuous on 11, 72) x R%. We have limp, o0 Q1 f (z) = 0 uniformly in
t € [11, 7). For each t >0 we have Qif € Co(RY).

Proof. For any ¢ > 0, y € R?, by Lemma 4.3, we obtain that
(t, ) = Lpy(t, ) (@ —y) — Lepy(t, ) (@ — y)
is continuous on (0,00) x R%. Using this and (102) we show that
(t,x) = qo(t,x,y) is continuous on (0, 00) x R%. (103)

By Proposition 4.9 we have

c —c1|z—
lqo(t, 2, 9)| < —rgme (104)

For any n € N, t > 0, € R? denote
Quitle) = [ mlto)fw)dy
R

By (103), (104) and the dominated convergence theorem we obtain that (¢,z) —
Qo+ f(x) is continuous on (0,00) x R%. By Lemma 4.11, for any ¢ € (0, 7], z € R,

n € IN, we have
n+1t(n+1)(1 o)—1

Qe )] < sl (105)

Note that for any t > 0, € R, n € IN, n > 1 we have

Qntf //qu SxZQn lsf( )dst

R
For any £, € (0,71/2), using (103), (104) and (105), we show that
(t,x) — / / Qo(t — 5,2, 2)Qn-1sf(2)dzds

0 R

is continuous on [r, 7] X RY. Note also that for any e, € (0,71/2), t € [r, 7],
x € R4 ne N, n> 1 we have, by (73),

Qo(t —s,2,2)Qno1,f(2)dzds

t
< Al [ sy
t—e1

< ey %e1 || flloo-

Rd

This implies that (£,2) — Q,.f(z) is continuous on [r1, 7] x R% Using this and
(105) we obtain that (f,2) = Q. f(x) = > ey Qnef(x) is continuous on [, 7] x R%.
By Proposition 4.12 we obtain that lim|; . Q¢ f(2) = 0 uniformly in ¢ € [, 7).
This implies the assertion of the lemma. ([l
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The proofs of the next few results are very similar to the proofs of related results in
[28]. We will not repeat these reasonings but we refer the reader to the appropriate
proofs in [28].

Proposition 4.19. Choose v € (0,a) N (0,1]. For any t € (0,7], z,2/ € RY,
I € Bp(R?Y) we have

Uif () = Unf(2")] < et — 2] fl -

The above result follows by the same arguments as in the proof of [28, Proposition
3.18].
Note that, by Lemma 4.15, for any & € (0,1], t € [§,7 + €], z, 2 € R? we have
‘ op.(t,x — z)

t = [L7p.(t, ) (z — 2)| < c(&)e” 7, (106)

where c(€) is a constant depending on &, 7, a, 3, C, C, d, 01,12, 03, M4, Vo, €0, 0.

Lemma 4.20. (i) For every f € Cy(R?), € € (0,1] the function Ut(g)f(;v) belongs to
C*((0,00)) as a function of t and to C2(R%) as a function of x. Moreover,

0 < ()|l (107)

o (U D))
for each f € Co(RY), t € (0,7], x € R?, & € (0,1], where c(§) depends on
€7T7Q7B7Q7C7d7?717n277]3777471/07807607

(ii) For every f € Co(RY) we have

lim ([T f = flloo = 0.

t,£—0t

(iii) For every f € Co(R?) we have

Ut(g)f(;v) — 0, as |z|— oo,
uniformly in t € [0,7], £ € [0,1].
(iv) For every f € Co(R?) we have
|V = Uiflloe =0, as &0,
uniformly in t € [0, 7].
The proof of the above lemma is almost the same as the proof of [28, Lemma

3.19].
For any t > 0, £ € (0,1], x € R? we put
0

A f () = a(Ut(f)f)(w) — LU f) ().

Heuristically, the next lemma states that, if ¢ is small, then A f (x) is small. The
proof of this lemma almost exactly follows the lines of the proof of [28, Lemma 3.22].

Lemma 4.21. A,Eg)f(a:) is well defined for every f € Co(R?), t € (0,7], £ € (0,1],
r € R? and we have
(i) for any f € Co(R?),

Agé)f(x) —0, as &—07,

uniformly in (t,x) € [11, 7] x R for every 7 > 1 > 7 > 0,
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(ii) for any f € Cy(R9),
t
/ A& f(x)ds =0, as &—0F, (108)
0

uniformly in (t,x) € (0,7] x R<.

The next result (positive maximum principle) is based on the ideas from [23,
Section 4.2]. Its proof is very similar to the proof of [23, Lemma 4.3] and it is
omitted.

Lemma 4.22. Let us consider the function v : [0,00) x RY — R and the family
of functions v'® : [0,00) x R* = R, ¢ € (0,1]. Assume that for each & € (0,1]
SUDye (0,1],ze R4 [0 (t,7)| < oo, v© is C* in the first variable and C? in the second
variable. We also assume that (for any T > 0)

(1)

v (t, ) = v(t,x) as € — 0%,

uniformly in t € [0,7], © € RY;

(i)

vO(t,x) -0 as |z| = oo,

uniformly in t € [0,7], £ € (0,1];

(7i) for any 0 <1 <715 <,

0
av(s)(t,x) — 0Ot z) -0 as €—07,
uniformly in t € [, 7], x € RY;
(iv)
vO(t,2) = v(0,2) as &€—0" and t — 0T,

uniformly in v € RY;
(v) for any z € R v(0,z) > 0.
Then for any t > 0, x € R* we have v(t,z) > 0.

Proposition 4.23. For anyt > 0, x € R? and f € Co(R?) such that f(z) > 0 for
all x € RY we have U, f(x) > 0.

Proof. Let f € Co(R?) be such that f(z) > 0 for all z € R%. For t > 0, z € R,
¢ € (0,1] put v(t,z) = Uf (x), v (t,2) = U f(x). By Lemmas 4.20 and 4.21 we
obtain that v(t, ), v\ (t,z) satisfy the assumptions of Lemma 4.22. The assertion
follows from Lemma 4.22. 0J

5. CONSTRUCTION AND PROPERTIES OF THE SEMIGROUP OF X,

In this section we will construct the semigroup 7; corresponding to the solution of
(1). This will be done by, heuristically speaking, adding the impact of long jumps to
the semigroup U;, constructed in the last section, corresponding to the solution of
(1) in which the process Z is replaced by the process with truncated Lévy measure.
The construction of the semigroup 7; is rather standard. Many arguments in this
section are similar to the analogous proofs in [28]. Such arguments will be omitted.
At the end of this section we show that 7; = P, (where P, is defined in (5)) and
prove Theorems 1.1, 1.3 and Proposition 1.2.
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Note that by (13) we have v;(x) < c|z|~'7* for |z| > 6. Let us introduce the
following notation

Ny = zd;/R(yi(x) () de < .
Note that, by (52), for any = € R? and f € By(R%), we have
R f(x) = Z [ G+ ata)n) = @) i) = pw) due
We denote, for any z ;Rd and f € %By(RY),
N ) = Z | #a+ aiae) (46w) = () du

It is clear that

1 £l < Aoll (109)
Forany ¢t > 0, € € [0,1], z € R% and n € IN, f € By(RY) we define
Vouf(x) = Uf(x), (110)
U, f(z) = t U s(N (Vo1 5 f))(x)ds, n>1, (111)
U f(z) = rfoff>f<x>, (112)
) = [ UG e ds a1 (13)

We remark that ¥, ; = g0

n,t*

For any x € R? we define

L) = ¢S W f(@), 120
n=0
Tof(l') = f(x)a

T9f(@) = e 0l f(x), t>0, £€0,1].
n=0

By the same arguments as in Lemma 4.1 and Corollary 4.2 in [28] one can easily
show that ¥, ,f(x), \Ilgfl)tf(x), Tif(x) and Tt(g)f(m) are well defined for any t > 0,
f € By(RY), 2 € RY, n € N and € € [0,1]. Moreover, for t € [0,7], f € By(RY),
z € RY, € €[0,1] we have max{|T,f(z)], TV f(2)|} < ¢|l .

Next, we present two regularity results concerning the operators 7;. The proofs

of these two following results are almost the same as the proofs of Theorems 4.3 and
4.4 in [28] and are omitted.

Theorem 5.1. For any v € (0,a/(d+ 8 —a)), t € (0,7], z € R? and f € L*(RY) N
L>*(R%) we have
I Tof ()] < et FIE £
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Theorem 5.2. Choose vy € (0,a)N(0,1]. For anyt € (0,7], z,2’ € R%, f € By(R?)
we have
ITof () = Tf (2)] < ™ = 2/ flloo:

We need the following auxiliary result. Its proof is similar to the proof of Lemma
4.10 in [28] and it is omitted.

Lemma 5.3. Assume that f € By(R?). For any e, > 0 there existsr > 1 (depending
on e, T,, 3,C,C,d,n1,m2,13, M4, Vo, €0, %), such that for any & € [0,1], ¢t € [0,7],
v € RY, if dist(x, supp(f)) > 7, then [T\ f(x)] < 3202, W5 F(2)] < €| flloo-

Now we need the following result which, roughly speaking, gives that locally T} f
for f € B,(RY) may be approximated by a sequence T fi, k € IN, where f,, € Co(RY).

Proposition 5.4. For each t € (0,7], f € By(RY) and R > 1 there exists a se-
quence f, € Co(RY), k € N such that limy_,o fr(z) = f(z) for almost all x €
B(0, R); for any k € N we have || filloo < ||flle and for any z € B(0, R) we have
limy o0 Tt fi(x) = Ty f (2).

Proof. Fix t € (0,7], f € Bp(R?), R > 1 and k € N, k£ > 1. By Lemma 5.3 there
exists Ry > R such that for any = € B(0, R) we have

T 00 (0] < 7 (114)

Put g1 x(x) = 1po,r)(2)f(2), gox(x) = 1peo,r,)(x)f(x). By standard arguments
there exists fx € Co(R?) such that

1
1fx — g1kl < T
and supp(fix) C B(0, Rx + 1), || flloo < || flloe- By Theorem 5.1, for any = € R?, we

have
1—a/(2d+28—2«
cf £jac /B2

Ti(fe = g10)(2)] < Lo/(2d+26—2a)41/2
This and (114) imply that for any = € B(0, R) we have limy_,. T3 fx(z) = Tif(x).
We also have || filpo,r) — flao,r)lli < 1/k. Hence, there exists a subsequence k,
such that lim,, o0 fi, (z) = f(x) for almost all x € B(0, R). O

The next result, Proposition 5.5 is a very important one, it will be a main tool
(in the proof of Theorem 1.1) to show that for any ¢t > 0 we have T, = P,, where P,
is given by (5). The steps leading to prove this proposition are very similar to the
arguments used in [28] to show Proposition 4.21. In that paper one shows that T, f
for f € Cy(R?) satisfies the appropriate heat equation in the approximate setting,
see [28, Lemma 4.18]. Then in the proof of [28, Proposition 4.21] one uses this
heat equation and the positive maximum principle (for the operator ¥), which is
formulated in [28, Lemma 4.19]. These arguments can be repeated, almost without
changes to obtain the proof of Proposition 5.5. We decided not to repeat these
arguments, since the interested reader can easily find them in [28].

Proposition 5.5. For any t € (0,00), z € R and f € C2(RY) we have

1) = )+ | L) (@) ds. (115)
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The next result, Theorem 5.6 shows that {T}} is a Feller semigroup. Its proof is
almost the same as the proof of [28, Theorem 4.22]. Again, we decided not to repeat
it.

Theorem 5.6. We have

(i) Ty : Co(RY) — Co(R?) for any t € (0, 00),

(ii) Tyf (x) > 0 for any t > 0, x € R? and f € Cy(R?) such that f(x) >0 for all
r € RY,

(iii) Tylga(z) = 1 for any t > 0, x € R4,

(iv) Tyrof (x) = To(To f)(x) for any s,t >0, z € R, f € Cy(RY),

(v) limy o+ [|Tof = flloo = 0 for any f € Co(RY).

(vi) there exists a nonnegative function p(t,z,y) in (t,z,y) € (0,00) x R¢ x RY;
for each fized t > 0, x € Rd the function y — p(t,z,y) is Lebesgue measurable,
Jrap(t,z,y)dy =1 and T, f (z) = [pap(t x ) f(y) dy for f e Co(RY).

We are now in a position to prov1de the proofs of Theorems 1.1 and 1.3.

proof of Theorem 1.1. From Theorem 5.6 we conclude that there is a Feller process
X, with the semigroup 7; on Co(R9). Let P*, E* be the distribution and expectation
of the process X, starting from z € R

By Theorem 5.6 (vi), Proposition 5.4 and Lemma 5.3 we get

B A(X) = Tif(e) = [ pltoea)f @)y, [ ERRY. >0, €RL (116

By Proposition 5.5, for any function f € C?(R?), the process
VIV = %) = %) - [ (s

is a (IF‘”J,‘:E) martingale, where %, is a natural filtration. That is P* solves the
martingale problem for (¥, C?(R%)). On the other hand, by standard arguments,
the unique solution X to the stochastic equation (1) has the law which is the solution
to the martingale problem for (¥, C?(R?)) (see e.g. [29, page 120]).

By the Lipschitz property of a; ;(z) and by the Yamada-Watanabe theorem (see
[33, Theorems 37.5 and 37.6]) the equation (1) has the weak uniqueness property.
By this and [29, Corollary 2.5] weak uniqueness holds for the martingale problem
for (K, C?(R?)).

Hence X and X have the same law so for any ¢ > 0, z € R% and any Borel set
D C R® we have

B*(1p(X0) = [ plt.2.9)dy (117)

Using this, (5) and (116) we obtain ’
Pf(z) =Tif(z), t>0,zeR? fecB(RY. (118)
Now the assertion of Theorem 1.1 follows from Theorem 5.2 and (118). O
proof of Theorem 1.3. The result follows from Theorem 5.1 and (118). O

proof of Proposition 1.2. From (117) we know that transition densities p(t,z,y) for
X, exists. By Lemma 4.3 (¢,z,y) — p,(t,z) is continuous on (0,00) x R x R%. By
(75) and (102) we obtain that (t,x,y) — qo(t,z,y) is continuous on (0,00) x R4 x
R?. Tt follows that (t,z,y) — q(t,7,y) and (¢,7,y) — u(t,x,y) are continuous on
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(0,00) x R? x R?. Using this and Proposition 4.23 we obtain that for any ¢ > 0,
z,y € R? we have u(t,z,y) > 0. Denote ug(t,z,y) = u(t, x,y).
Forn € N, n>1,t>0, z,y € R? let us define by induction

un(t,x,y) / /}Rduot S, z)/ Un—1(8, z4+a;(2)w, y) (vi(w)—p;(w)) dw dz ds.

By (111) we have
Woif(@) = [ ualtn ) ) dy

It follows that for any ¢ > 0, z € R* we have p(t,z,y) = e 2> u,(t,x,y)
for almost all y € R? with respect to the Lebesgue measure. Denote 6;(w) =
vi(w) — pi(w) and p(t, z,y) = e 3> Ju,(t,2,y). Foranyt >0, z,y € R, ke N
put uék)(t)(t,x,y) =ug(t,z,y) ANk. Forne N, n>1, k€N, t>0, z,y € R let us
define by induction

ul (t, 2, y) < / / u(()k)(t - s,x,z)/ u,(f_)l(s,z%—ai(z)w,y)ei(w) dwdzds) NEk.
R R

It follows that (t,z,y) — uP (t,z,y) are continuous on (0,00) x R¢ x R¢ . Clearly,

for any ¢ > 0, z,y € R? we have uP (t,z,y) > 0. We also have limy_, uP (t,x,y) =

un(t, z,y). Hence p(t,z,y) = limy_0o e > Ju ulP(t,x,y). Therefore (t,,y) —
p(t, z,y) is lower semi-continuous on (0, 00) x R¢ x ]Rd and for any Borel set D C R?
we have P*(X; € D) = [, p(t, z,y) dy. O

Acknowledgements. We thank prof. J. Zabczyk for communicating to us
the problem of the strong Feller property for solutions of SDEs driven by a-stable
processes with independent coordinates. We also thank A. Kulik for discussions on
the problem treated in the paper.

REFERENCES

[1] R. Bass, Z.-Q. Chen, Regularity of harmonic functions for a class of singular stable-like pro-
cesses, Math. Z. 266 no. 3 (2010), 489-503.

[2] K. Bogdan, T. Grzywny, M. Ryznar, Density and tails of unimodal convolution semigroups,
J. Funct. Anal. 266 (2014), 3543-3571.

[3] K. Bogdan, T. Jakubowski, Estimates of heat kernel of fractional Laplacian perturbed by
gradient operators, Comm. Math. Phys. 271 (1) (2007), 179-198.

[4] K. Bogdan, P. Sztonyk, V. Knopova, Heat kernel of anisotropic nonlocal operators,
arXiv:1704.03705 (2017).

[5] J. Chaker, Regularity of solutions to anisotropic nonlocal equations, arXiv:1607.08135 (2016).

[6] J. Chaker, The martingale problem for anisotropic nonlocal operators, arXiv:1802.05888, to
appear in Math. Nachr.

[7] J. Chaker, M. Kassmann, Nonlocal operators with singular anisotropic kernels,
arXiv:1803.01835, to appear in Comm. Part. Differ. Equat.

[8] Z.-Q. Chen, P. Kim, R. Song, Dirichlet heat kernel estimates for fractional Laplacian with
gradient perturbation, Ann. Probab. 40 (2012), 2483-2538.

[9] Z.-Q. Chen, X. Zhang, Heat kernels and analyticity of non-symmetric jump diffusion semi-
groups, Probab. Theory Relat. Fields 165, no. 1-2 (2016), 267-312.

[10] Z.-Q. Chen, X. Zhang, Heat kernels for time-dependent non-symmetric stable-like operators,
J. Math. Anal. Appl. 465(1) (2018), 1-21.
[11] F. H. Clarke, On the inverse function theorem, Pacific Journal of Mathematics Vol. 64, No 1

(1976), 97-102.



44

12]
13]
14]
[15]
[16]
17]

[18]

T. KULCZYCKI AND M. RYZNAR

A. Debussche, N. Fournier, Fxistence of densities for stable-like driven SDEs with Hélder
continuous coefficients, J. Funct. Anal. 264(8) (2013), 1757-1778.

Z. Dong, X. Peng, Y. Song, X. Zhang, Strong Feller properties for degenerate SDFEs with
jumps, Ann. Inst. H. Poincar Probab. Statist. 52 (2016), 888-897.

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood
Cliffs, N.J., (1975).

M. Friesen, P. Jin, B. Riidiger, Fzistence of densities for stochastic differential equations driven
by Lévy processes with anisotropic jumps, arXiv:1810.07504 (2018).

T. Grzywny, K. Szczypkowski, Estimates of heat kernels of non-symmetric Lévy processes,
arXiv:1710.07793 (2017).

T. Grzywny, K. Szczypkowski, Heat kernels of non-symmetric Lévy-type operators, J. Differ-
ential Equations 267(10) (2019), 6004-6064.

P. Hajtasz, Change of variables formula under minimal assumptions, Colloquium Mathe-
maticum 64(1) (1993), 93-101.

P. Jin, Heat kernel estimates for non-symmetric stable-like processes, arXiv:1709.02836 (2017).
K. Kaleta, P. Sztonyk, Estimates of transition densities and their derivatives for jump Lévy
processes, J. Math. Anal. Appl. 431 (2015), 260282.

P. Kim, R. Song, Z. Vondracek, Heat kernels of non-symmetric jump processes: beyond the
stable case, Potential Anal. 49(1) (2018), 37-90.

V. Knopova, A. Kulik, Intrinsic compound kernel estimates for the transition probability den-
sity of Lévy-type processes and their applications, Probab. Math. Statist. 37 (2017), no. 1,
53-100.

V. Knopowa, A. Kulik, Parametriz construction of the transition probability density of the
solution to an SDE driven by a-stable noise, Ann. Inst. H. Poincar Probab. Statist. 54 (2018),
100-140.

A. N. Kochubei, Parabolic pseudodifferential equations, hypersingular integrals and Markov
processes, Math. USSR Izv. 33 (1989), 233-259; translation from Izv. Akad. Nauk SSSR, Ser.
Mat. 52 (1988), 909-934.

F. Kithn, Transition probabilities of Lévy-type processes: Parametrix construction, Math.
Nachr. 292(2) (2019), 358-376.

T. Kulczycki, M. Ryznar, Gradient estimates of harmonic functions and transition densities
for Lévy processes, Trans. Amer. Math. Soc. 368, no. 1 (2016), 281-318.

T. Kulezycki, M. Ryznar, Transition density estimates for diagonal systems of SDEs driven by
cylindrical a-stable processes, ALEA Lat. Am. J. Probab. Math. Stat. 15 (2018), 1335-1375.

T. Kulczycki, M. Ryznar, P. Sztonyk, Strong Feller property for SDEs driven by multiplicative
cylindrical stable noise, arXiv:1811.05960 (2018).

T. Kurtz, Fquivalence of stochastic equations and martingale problems, Stochastic analysis
2010, 113-130, Springer, Heidelberg (2011).

O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Uralceva, Linear and Quasi-linear Equations of
Parabolic Type (translated from the Russian by S.Smith), American Mathematical Society,
Providence, (1968).

E. E. Levi, Sulle equazioni lineari totalmente ellittiche alle derivate parziali, Rend. Circ. Mat.
Palermo 24 (1907), 275317.

M. Liang, J. Wang, Gradient Estimates and Ergodicity for SDEs Driven by Multiplicative Lévy
Noises via Coupling, Stochastic Process. Appl., https://doi.org/10.1016/j.spa.2019.09.001

M. Métivier, Semimartingales. A Course on Stochastic Processes, Walter de Gruyter, Berlin
(1982).

E. Priola, J. Zabczyk, Structural properties of semilinear SPDFEs driven by cylindrical stable
processes, Probab. Theory Related Fields 149 | no. 1-2 (2011), 97-137.

M. Ryznar, Estimates of Green function for relativistic a-stable process, Potential Anal. 17
(2002), no. 1, 1-23.

R. Schilling, A. Schnurr, The symbol associated with the solution of a stochastic differential
equation, Electron. J. Probab. 15 (2010), 1369-1393.

R. Schilling, P. Sztonyk and J. Wang, Coupling property and gradient estimates for Lévy
processes via the symbol, Bernoulli 18 (2012), 1128-1149.



SDES DRIVEN BY LEVY PROCESSES 45

[38] R. Schilling, J. Wang, Strong Feller continuity of Feller processes and semigroups, Infin. Di-
mens. Anal. Quantum Probab. Relat. Top. 15 no. 2 (2012), 1250010 (28 pages).

[39] P. Sztonyk, Estimates of densities for Lévy processes with lower intensity of large jumps, Math.
Nachr. 290, no. 1 (2017), 120-141.

[40] F.-Y. Wang, L. Xu, X. Zhang, Gradient estimates for SDEs driven by multiplicative Lvy noise,
J. Funct. Anal. 269 (2015), 3195-3219.

[41] L. Wang, X. Zhang, Harnack Inequalities for SDEs Driven by Cylindrical a-Stable Processes,
Potential Anal. 42(3) (2015), 657669.

[42] L. Xie, X. Zhang, Ergodicity of stochastic differential equations with jumps and singular coef-
ficients, arXiv:1705.07402 (2017).

[43] L. Xie, X. Zhang, Heat kernel estimates for critical fractional diffusion, Studia Math. 224(3)
(2014), 221-263.

FACULTY OF PURE AND APPLIED MATHEMATICS, WROCLAW UNIVERSITY OF SCIENCE AND
TECHNOLOGY, WYB. WYSPIANSKIEGO 27, 50-370 WROCLAW, POLAND.

E-mail address: Tadeusz.Kulczycki@pwr.edu.pl

E-mail address: Michal.Ryznar@pwr.edu.pl



