List 2 Applied Logic Szymon Żeberski

- 1. Assume that $\varphi, \psi_0, \psi_1, \ldots, \psi_n$ are sentences of modal logic and (X, R) is a Kripke's frame.
 - a) Prove that $(X, R) \models \varphi(p_0, p_1, \dots, p_n)$ implies that $(X, R) \models \varphi(\psi_0, \psi_1, \dots, \psi_n)$.
 - b) Is the reverse implication true?
- 2. Prove that $\models \varphi$ implies $\models_K \varphi$, i.e. every tautology is a modal tautology.

3. Show that the following sentences are modal tautologies, i.e. they are true in every Kripke's frame:

a) $\Box(p \land q) \leftrightarrow (\Box p \land \Box q),$ b) $(\Box p \lor \Box q) \rightarrow \Box(p \lor q),$ c) $\neg \Box p \leftrightarrow \Diamond \neg p,$ d) $\Diamond(p \lor q) \leftrightarrow (\Diamond p \lor \Diamond q).$

4. Show that the following sentences are not modal tautologies:

- a) $\Box p \to \Diamond p$, b) $\Diamond p \to \Box p$, c) $\Box (p \lor q) \leftrightarrow (\Box p \lor \Box q)$, d) $p \to \Diamond p$.
- 5. Which of the following sentences are modal tautologies:
 - a) $\Box p \to \Box \Box p$, b) $\Diamond \Box p \to \Box \Diamond p$, c) $\Box (p \lor q) \to (\Diamond p \lor \Diamond q)$, d) $p \to \Box \Diamond \Box p$.
- 6. Assume that (X, R) is a Kripke's frame. Prove that relation R is transitive if and only if $(X, R) \models \Diamond \Diamond p \rightarrow \Diamond p$.

R is transitive if $(\forall x, y, z)(xRy \land yRz \rightarrow xRz)$.

- 7. Assume that (X, R) is a Kripke's frame. Prove that relation R is symetric if and only if $(X, R) \models p \rightarrow \Box \Diamond p$. R is symetric if $(\forall x, y)(xRy \rightarrow yRx)$.
- 8. Assume that (X, R) is a Kripke's frame. Prove that relation R is Euclidean if and only if $(X, R) \models \Diamond p \rightarrow \Box \Diamond p$.

A relation R is called Euclidean if $(\forall x, y, z)(xRy \land xRz \rightarrow yRz)$.

- 9. Characterize Kripke's frames such that
 - a) $(X, R) \models \Box p \to \Diamond p$,
 - b) $(X, R) \models \Diamond p \rightarrow \Box p$,
 - c) $(X, R) \models \Box p \leftrightarrow \Diamond p$,

10. How many pairwise nonequivalent sentences of modal logic can we find using one propositional variable p and connectives \Box, \Diamond in logic

a) S5, b) S4, c) K?

Recall that K is the logic of all Kripke's frames, S4 is the logic of preorders and S5 is the logic of equivalence relations.